Search results
Results from the WOW.Com Content Network
m is a divisor of n (also called m divides n, or n is divisible by m) if all prime factors of m have at least the same multiplicity in n. The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then ...
84 is a semiperfect number, [1] being thrice a perfect number, and the sum of the sixth pair of twin primes (+). [2] It is the number of four-digit perfect powers in decimal . [ 3 ]
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.
The factorizations are often not unique in the sense that the unit could be absorbed into any other factor with exponent equal to one. The entry 4+2i = −i(1+i) 2 (2+i), for example, could also be written as 4+2i= (1+i) 2 (1−2i). The entries in the table resolve this ambiguity by the following convention: the factors are primes in the right ...
Any Ruth–Aaron pair of square-free integers belongs to both lists with the same sum of prime factors. The intersection also contains pairs that are not square-free, for example (7129199, 7129200) = (7×11 2 ×19×443, 2 4 ×3×5 2 ×13×457).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
However, amicable numbers where the two members have different smallest prime factors do exist: there are seven such pairs known. [8] Also, every known pair shares at least one common prime factor. It is not known whether a pair of coprime amicable numbers exists, though if any does, the product of the two must be greater than 10 65.
More generally, a positive integer c is the hypotenuse of a primitive Pythagorean triple if and only if each prime factor of c is congruent to 1 modulo 4; that is, each prime factor has the form 4n + 1. In this case, the number of primitive Pythagorean triples (a, b, c) with a < b is 2 k−1, where k is the number of distinct prime factors of c ...