enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Similarity measure - Wikipedia

    en.wikipedia.org/wiki/Similarity_measure

    In statistics and related fields, a similarity measure or similarity function or similarity metric is a real-valued function that quantifies the similarity between two objects. Although no single definition of a similarity exists, usually such measures are in some sense the inverse of distance metrics : they take on large values for similar ...

  3. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Educational data mining Cluster analysis is for example used to identify groups of schools or students with similar properties. Typologies From poll data, projects such as those undertaken by the Pew Research Center use cluster analysis to discern typologies of opinions, habits, and demographics that may be useful in politics and marketing.

  4. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    Cluster analysis, a fundamental task in data mining and machine learning, involves grouping a set of data points into clusters based on their similarity. k-means clustering is a popular algorithm used for partitioning data into k clusters, where each cluster is represented by its centroid.

  5. Similarity learning - Wikipedia

    en.wikipedia.org/wiki/Similarity_learning

    Similarity learning is closely related to distance metric learning.Metric learning is the task of learning a distance function over objects. A metric or distance function has to obey four axioms: non-negativity, identity of indiscernibles, symmetry and subadditivity (or the triangle inequality).

  6. Normalized compression distance - Wikipedia

    en.wikipedia.org/wiki/Normalized_compression...

    In order to measure the information of a string relative to another there is the need to rely on relative semi-distances (NRC). [15] These are measures that do not need to respect symmetry and triangle inequality distance properties. Although the NCD and the NRC seem very similar, they address different questions.

  7. Jaccard index - Wikipedia

    en.wikipedia.org/wiki/Jaccard_index

    The Jaccard index is widely used in computer science, ecology, genomics, and other sciences, where binary or binarized data are used. Both the exact solution and approximation methods are available for hypothesis testing with the Jaccard index. [6] Jaccard similarity also applies to bags, i.e., multisets.

  8. Spectral clustering - Wikipedia

    en.wikipedia.org/wiki/Spectral_clustering

    An example connected graph, with 6 vertices. Partitioning into two connected graphs. In multivariate statistics, spectral clustering techniques make use of the spectrum (eigenvalues) of the similarity matrix of the data to perform dimensionality reduction before clustering in fewer dimensions. The similarity matrix is provided as an input and ...

  9. Medoid - Wikipedia

    en.wikipedia.org/wiki/Medoid

    Cosine similarity is a widely used measure to compare the similarity between two pieces of text. It calculates the cosine of the angle between two document vectors in a high-dimensional space. [14] Cosine similarity ranges between -1 and 1, where a value closer to 1 indicates higher similarity, and a value closer to -1 indicates lower similarity.