Search results
Results from the WOW.Com Content Network
At a cellular level, motor learning manifests itself in the neurons of the motor cortex. Using single-cell recording techniques, Dr. Emilio Bizzi and his collaborators have shown the behavior of certain cells, known as "memory cells," can undergo lasting alteration with practice. Motor learning is also accomplished on the musculoskeletal level.
A motor program is an abstract metaphor of the central organization of movement and control of the many degrees of freedom involved in performing an action. Biologically realistic alternatives to the metaphor of the "motor program" are represented by central pattern generators .
The memory encoding stage is often referred to as motor learning, and requires an increase in brain activity in motor areas as well as an increase in attention. Brain areas active during motor learning include the motor and somatosensory cortices; however, these areas of activation decrease once the motor skill is learned.
A series of experiments demonstrated the interrelation between motor experience and high-level reasoning. For example, although most individuals recruit visual processes when presented with spatial problems such as mental rotation tasks [24] motor experts favor motor processes to perform the same tasks, with higher overall performance. [25]
One definition of a controlled process is an intentionally-initiated sequence of cognitive activities. [6] In other words, when attention is required for a task, we are consciously aware and in control. Controlled processes require us to think about situations, evaluate and make decisions. An example would be reading this article.
The motor neuron sends an electrical impulse to a muscle. When the neuron in the cortex becomes active, it causes a muscle contraction. The greater the activity in the motor cortex, the stronger the muscle force. Each point in the motor cortex controls a muscle or a small group of related muscles. This description is only partly correct.
Common coding theory is a cognitive psychology theory describing how perceptual representations (e.g. of things we can see and hear) and motor representations (e.g. of hand actions) are linked. The theory claims that there is a shared representation (a common code) for both perception and action.
Psychomotor learning is the relationship between cognitive functions and physical movement.Psychomotor learning is demonstrated by physical skills such as movement, coordination, manipulation, dexterity, grace, strength, speed—actions which demonstrate the fine or gross motor skills, such as use of precision instruments or tools, and walking.