enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Infinity Laplacian - Wikipedia

    en.wikipedia.org/wiki/Infinity_Laplacian

    In this equation, we used sup and inf instead of max and min because the graph (,) does not have to be locally finite (i.e., to have finite degrees): a key example is when () is the set of points in a domain in , and (,) if their Euclidean distance is at most . The importance of this example lies in the following.

  3. Laplace's equation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_equation

    In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.

  4. Green's function for the three-variable Laplace equation

    en.wikipedia.org/wiki/Green's_function_for_the...

    The free-space circular cylindrical Green's function (see below) is given in terms of the reciprocal distance between two points. The expression is derived in Jackson's Classical Electrodynamics. [1] Using the Green's function for the three-variable Laplace operator, one can integrate the Poisson equation in

  5. Cylindrical harmonics - Wikipedia

    en.wikipedia.org/wiki/Cylindrical_harmonics

    The cylindrical harmonics for (k,n) are now the product of these solutions and the general solution to Laplace's equation is given by a linear combination of these solutions: (,,) = | | (,) (,) where the () are constants with respect to the cylindrical coordinates and the limits of the summation and integration are determined by the boundary ...

  6. Laplacian vector field - Wikipedia

    en.wikipedia.org/wiki/Laplacian_vector_field

    However, the converse is not true; not every vector field that satisfies Laplace's equation is a Laplacian vector field, which can be a point of confusion. For example, the vector field v = ( x y , y z , z x ) {\displaystyle {\bf {v}}=(xy,yz,zx)} satisfies Laplace's equation, but it has both nonzero divergence and nonzero curl and is not a ...

  7. Well-posed problem - Wikipedia

    en.wikipedia.org/wiki/Well-posed_problem

    For example, the Cauchy–Kowalevski theorem for Cauchy initial value problems essentially states that if the terms in a partial differential equation are all made up of analytic functions and a certain transversality condition is satisfied (the hyperplane or more generally hypersurface where the initial data are posed must be non ...

  8. Poisson kernel - Wikipedia

    en.wikipedia.org/wiki/Poisson_kernel

    In mathematics, and specifically in potential theory, the Poisson kernel is an integral kernel, used for solving the two-dimensional Laplace equation, given Dirichlet boundary conditions on the unit disk. The kernel can be understood as the derivative of the Green's function for the Laplace equation.

  9. Dirichlet form - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_form

    This allows mathematicians to study the Laplace equation and heat equation on spaces that are not manifolds, for example, fractals. The benefit on these spaces is that one can do this without needing a gradient operator, and in particular, one can even weakly define a "Laplacian" in this manner if starting with the Dirichlet form.