enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 5-manifold - Wikipedia

    en.wikipedia.org/wiki/5-manifold

    In mathematics, a 5-manifold is a 5-dimensional topological manifold, possibly with a piecewise linear or smooth structure. Non- simply connected 5-manifolds are impossible to classify, as this is harder than solving the word problem for groups . [ 1 ]

  3. Pushforward (differential) - Wikipedia

    en.wikipedia.org/wiki/Pushforward_(differential)

    If a map, φ, carries every point on manifold M to manifold N then the pushforward of φ carries vectors in the tangent space at every point in M to a tangent space at every point in N. In differential geometry, pushforward is a linear approximation of smooth maps

  4. Fundamental vector field - Wikipedia

    en.wikipedia.org/wiki/Fundamental_vector_field

    In particular, if is a smooth manifold and is a smooth vector field, one is interested in finding integral curves to . More precisely, given p ∈ M {\displaystyle p\in M} one is interested in curves γ p : R → M {\displaystyle \gamma _{p}:\mathbb {R} \to M} such that:

  5. Distribution (differential geometry) - Wikipedia

    en.wikipedia.org/wiki/Distribution_(differential...

    Let be a smooth manifold; a (smooth) distribution assigns to any point a vector subspace in a smooth way. More precisely, consists of a collection {} of vector subspaces with the following property: Around any there exist a neighbourhood and a collection of vector fields, …, such that, for any point , span {(), …, ()} =.

  6. Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/Riemannian_geometry

    Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.

  7. Smooth structure - Wikipedia

    en.wikipedia.org/wiki/Smooth_structure

    This atlas contains every chart that is compatible with the smooth structure. There is a natural one-to-one correspondence between smooth structures and maximal smooth atlases. Thus, we may regard a smooth structure as a maximal smooth atlas and vice versa. In general, computations with the maximal atlas of a manifold are rather unwieldy.

  8. Congruence (manifolds) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(manifolds)

    In the theory of smooth manifolds, a congruence is the set of integral curves defined by a nonvanishing vector field defined on the manifold. Congruences are an important concept in general relativity , and are also important in parts of Riemannian geometry .

  9. Vector flow - Wikipedia

    en.wikipedia.org/wiki/Vector_flow

    Let V be a smooth vector field on a smooth manifold M. There is a unique maximal flow D → M whose infinitesimal generator is V. Here D ⊆ R × M is the flow domain. For each p ∈ M the map D p → M is the unique maximal integral curve of V starting at p. A global flow is one whose flow domain is all of R × M. Global flows define smooth ...