Search results
Results from the WOW.Com Content Network
The terms sensible heat and latent heat refer to energy transferred between a body and its surroundings, defined by the occurrence or non-occurrence of temperature change; they depend on the properties of the body. Sensible heat is sensed or felt in a process as a change in the body's temperature.
The amount of energy required for a phase change is known as latent heat. The "cooling rate" is the slope of the cooling curve at any point. Alloys have a melting point range. It solidifies as shown in the figure above. First, the molten alloy reaches to liquidus temperature and then freezing range starts.
This mechanism is found very commonly in everyday life, including central heating and air conditioning and in many other machines. Forced convection is often encountered by engineers designing or analyzing heat exchangers, pipe flow, and flow over a plate at a different temperature than the stream (the case of a shuttle wing during re-entry, for example).
The energy needed to evaporate the water is taken from the air in the form of sensible heat and converted into latent heat, while the air remains at a constant enthalpy. Latent heat describes the amount of heat that is needed to evaporate the liquid; this heat comes from the liquid itself and the surrounding gas and surfaces.
The latent heat release from condensation is the determinant between significant convection and almost no convection at all. The fact that air is generally cooler during winter months, and therefore cannot hold as much water vapor and associated latent heat, is why significant convection (thunderstorms) are infrequent in cooler areas during ...
From a thermodynamics point of view, at the melting point the change in Gibbs free energy ∆G of the substances is zero, but there are non-zero changes in the enthalpy (H) and the entropy (S), known respectively as the enthalpy of fusion (or latent heat of fusion) and the entropy of fusion.
The Bowen ratio is calculated by the equation: =, where is sensible heating and is latent heating. In this context, when the magnitude of is less than one, a greater proportion of the available energy at the surface is passed to the atmosphere as latent heat than as sensible heat, and the converse is true for values of greater than one.
In systems involving heat transfer, a condenser is a heat exchanger used to condense a gaseous substance into a liquid state through cooling. In doing so, the latent heat is released by the substance and transferred to the surrounding environment. Condensers are used for efficient heat rejection in many industrial systems.