enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hindgut fermentation - Wikipedia

    en.wikipedia.org/wiki/Hindgut_fermentation

    While foregut fermentation is generally considered more efficient, and monogastric animals cannot digest cellulose as efficiently as ruminants, [5] hindgut fermentation allows animals to consume small amounts of low-quality forage all day long and thus survive in conditions where ruminants might not be able to obtain nutrition adequate for their needs.

  3. Fungal extracellular enzyme activity - Wikipedia

    en.wikipedia.org/wiki/Fungal_extracellular...

    Thus, while most microorganisms can assimilate simple monomers, degradation of polymers is specialized, and few organisms can degrade recalcitrant polymers like cellulose and lignin. [16] Each microbial species carries specific combinations of genes for extracellular enzymes and is adapted to degrade specific substrates. [12]

  4. Trichoderma longibrachiatum - Wikipedia

    en.wikipedia.org/wiki/Trichoderma_longibrachiatum

    Trichoderma longibrachiatum, produces small toxic peptides containing amino acids not found in common proteins, like alpha-aminoisobutyric acid, called trilongins (up to 10% w/w). Their toxicity is due to absorption into cells and production of nano-channels that obstruct vital ion channels that ferry potassium and sodium ions across the cell ...

  5. Cellulose - Wikipedia

    en.wikipedia.org/wiki/Cellulose

    Cellulose for industrial use is mainly obtained from wood pulp and cotton. [6] Cellulose is also greatly affected by direct interaction with several organic liquids. [10] Some animals, particularly ruminants and termites, can digest cellulose with the help of symbiotic micro-organisms that live in their guts, such as Trichonympha.

  6. Cellulase - Wikipedia

    en.wikipedia.org/wiki/Cellulase

    Ribbon representation of the Streptomyces lividans β-1,4-endoglucanase catalytic domain - an example from the family 12 glycoside hydrolases [1]. Cellulase (EC 3.2.1.4; systematic name 4-β-D-glucan 4-glucanohydrolase) is any of several enzymes produced chiefly by fungi, bacteria, and protozoans that catalyze cellulolysis, the decomposition of cellulose and of some related polysaccharides:

  7. Herbivore - Wikipedia

    en.wikipedia.org/wiki/Herbivore

    A large percentage of herbivores also have mutualistic gut flora made up of bacteria and protozoans that help to degrade the cellulose in plants, [1] whose heavily cross-linking polymer structure makes it far more difficult to digest than the protein- and fat-rich animal tissues that carnivores eat. [2]

  8. Animal nutrition - Wikipedia

    en.wikipedia.org/wiki/Animal_nutrition

    Proteins are the basis of many animal body structures (e.g. muscles, skin, and hair). They also form the enzymes which control chemical reactions throughout the body. Each molecule is composed of amino acids which are characterized by the inclusion of nitrogen and sometimes sulfur. The body requires amino acids to produce new proteins (protein ...

  9. Cecotrope - Wikipedia

    en.wikipedia.org/wiki/Cecotrope

    Particles greater than 0.3-0.5 mm (mainly non-fermentable material) move to the center of the colon and then peristalsis moves them down the colon. Particles less than 0.3-0.5 mm (mainly fermentable fiber and proteins) move to the sides, and then retrograde peristalsis moves them back up the colon and into the cecum. [14] [2] [17] [9]