Search results
Results from the WOW.Com Content Network
Reactive oxygen species are implicated in cellular activity to a variety of inflammatory responses including cardiovascular disease. They may also be involved in hearing impairment via cochlear damage induced by elevated sound levels , in ototoxicity of drugs such as cisplatin , and in congenital deafness in both animals and humans.
Reactive nitrogen species act together with reactive oxygen species (ROS) to damage cells, causing nitrosative stress. Therefore, these two species are often collectively referred to as ROS/RNS. Reactive nitrogen species are also continuously produced in plants as by-products of aerobic metabolism or in response to stress. [3]
Generation of reactive oxygen and reactive nitrogen species in the phagolysosome, implicated in respiratory burst. There are 3 main pathways for the generation of reactive oxygen species or reactive nitrogen species (RNS) in effector cells: [3] Superoxide dismutase (or alternatively, myeloperoxidase) generates hydrogen peroxide from superoxide.
Reactive nitrogen ("Nr"), also known as fixed nitrogen [1], refers to all forms of nitrogen present in the environment except for molecular nitrogen (N 2 ). [ 2 ] While nitrogen is an essential element for life on Earth, molecular nitrogen is comparatively unreactive, and must be converted to other chemical forms via nitrogen fixation before it ...
A peroxisome (IPA: [pɛɜˈɹɒksɪˌsoʊm]) [1] is a membrane-bound organelle, a type of microbody, found in the cytoplasm of virtually all eukaryotic cells. [2] [3] Peroxisomes are oxidative organelles. Frequently, molecular oxygen serves as a co-substrate, from which hydrogen peroxide (H 2 O 2) is then formed. Peroxisomes owe their name to ...
It plays a role in antioxidant and reactive oxygen species responses. [60] Nitric oxide sensing in plants is mediated by the N-end rule of proteolysis [61] [62] and controls abiotic stress responses such as flooding-induced hypoxia, [63] salt and drought stress. [64] [65] [66]
In intense light, plants use various mechanisms to prevent damage to their photosystems. They are able to release some light energy as heat, but the excess light can also produce reactive oxygen species. While some of these can be detoxified by antioxidants, the remaining oxygen species will be detrimental to the photosystems of the plant. More ...
[52] [53] Nitrogen gases and aerosols can be directly toxic to certain plant species, affecting the aboveground physiology and growth of plants near large point sources of nitrogen pollution. Changes to plant species may also occur as nitrogen compound accumulation increases availability in a given ecosystem, eventually changing the species ...