Search results
Results from the WOW.Com Content Network
There are also many varieties of anoxygenic photosynthesis, used mostly by bacteria, which consume carbon dioxide but do not release oxygen. [13] [14] Carbon dioxide is converted into sugars in a process called carbon fixation; photosynthesis captures energy from sunlight to convert carbon dioxide into carbohydrates.
Reactive nitrogen species act together with reactive oxygen species (ROS) to damage cells, causing nitrosative stress. Therefore, these two species are often collectively referred to as ROS/RNS. Reactive nitrogen species are also continuously produced in plants as by-products of aerobic metabolism or in response to stress. [3]
This is known as carbon isotope discrimination and results in carbon-12 to carbon-13 ratios in the plant that are higher than in the free air. Measurement of this isotopic ratio is important in the evaluation of water use efficiency in plants, [ 32 ] [ 33 ] [ 34 ] and also in assessing the possible or likely sources of carbon in global carbon ...
In chemistry and biology, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (O 2), water, and hydrogen peroxide. Some prominent ROS are hydroperoxide (O 2 H), superoxide (O 2-), [1] hydroxyl radical (OH.), and singlet oxygen. [2] ROS are pervasive because they are readily produced from O 2, which is ...
Carbon is the 15th most abundant element in the Earth's crust, and the fourth most abundant element in the universe by mass, after hydrogen, helium, and oxygen. Carbon's widespread abundance, its ability to form stable bonds with numerous other elements, and its unusual ability to form polymers at the temperatures commonly encountered on Earth ...
[52] [53] Nitrogen gases and aerosols can be directly toxic to certain plant species, affecting the aboveground physiology and growth of plants near large point sources of nitrogen pollution. Changes to plant species may also occur as nitrogen compound accumulation increases availability in a given ecosystem, eventually changing the species ...
Carbon on Earth naturally occurs in two stable isotopes, with 98.9% in the form of 12 C and 1.1% in 13 C. [1] [8] The ratio between these isotopes varies in biological organisms due to metabolic processes that selectively use one carbon isotope over the other, or "fractionate" carbon through kinetic or thermodynamic effects. [1]
Certain species of plants or algae have mechanisms to lower the uptake of molecular oxygen by RuBisCO. These are commonly referred to as Carbon Concentrating Mechanisms (CCMs), as they increase the concentration of CO 2 so that RuBisCO is less likely to produce glycolate through reaction with O