Search results
Results from the WOW.Com Content Network
The weighted median is shown in red and is different than the ordinary median. In statistics, a weighted median of a sample is the 50% weighted percentile. [1] [2] [3] It was first proposed by F. Y. Edgeworth in 1888. [4] [5] Like the median, it is useful as an estimator of central tendency, robust against outliers. It allows for non-uniform ...
In statistics, the Hodges–Lehmann estimator is a robust and nonparametric estimator of a population's location parameter.For populations that are symmetric about one median, such as the Gaussian or normal distribution or the Student t-distribution, the Hodges–Lehmann estimator is a consistent and median-unbiased estimate of the population median.
In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated.This can be thought of as a generalisation of many classical methods—the method of moments, least squares, and maximum likelihood—as well as some recent methods like M-estimators.
Weighted least squares (WLS), also known as weighted linear regression, [1] [2] is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression.
For normally distributed random variables inverse-variance weighted averages can also be derived as the maximum likelihood estimate for the true value. Furthermore, from a Bayesian perspective the posterior distribution for the true value given normally distributed observations and a flat prior is a normal distribution with the inverse-variance weighted average as a mean and variance ().
For context, the best single point estimate by L-estimators is the median, with an efficiency of 64% or better (for all n), while using two points (for a large data set of over 100 points from a symmetric population), the most efficient estimate is the 27% midsummary (mean of 27th and 73rd percentiles), which has an efficiency of about 81% ...
Such an estimator is not necessarily an M-estimator of ρ-type, but if ρ has a continuous first derivative with respect to , then a necessary condition for an M-estimator of ψ-type to be an M-estimator of ρ-type is (,) = (,). The previous definitions can easily be extended to finite samples.
IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set, for example, by minimizing the least absolute errors rather than the least square errors.