Search results
Results from the WOW.Com Content Network
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}
A complex number is real if and only if it equals its own conjugate. The unary operation of taking the complex conjugate of a complex number cannot be expressed by applying only their basic operations addition, subtraction, multiplication and division. Argument φ and modulus r locate a point in the complex plane.
The conjugate transpose of a matrix with real entries reduces to the transpose of , as the conjugate of a real number is the number itself. The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by 2 × 2 {\displaystyle 2\times 2} real matrices, obeying matrix addition and multiplication:
The letter stands for a vector in , is a complex number, and ¯ denotes the complex conjugate of . [1] More concretely, the complex conjugate vector space is the same underlying real vector space (same set of points, same vector addition and real scalar multiplication) with the conjugate linear complex structure J {\displaystyle J} (different ...
The map χ may either be regarded as a conjugate-linear map from V C to itself or as a complex linear isomorphism from V C to its complex conjugate ¯. Conversely, given a complex vector space W with a complex conjugation χ , W is isomorphic as a complex vector space to the complexification V C of the real subspace
These operators are direct extensions of their complex analogs: if a and b are taken from the real subset of complex numbers, the appearance of the conjugate in the formulas has no effect, so the operators are the same as those for the complex numbers. The product of a nonzero element with its conjugate is a non-negative real number:
In mathematics, complex multiplication (CM) is the theory of elliptic curves E that have an endomorphism ring larger than the integers. [1] Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible when the period lattice is the Gaussian integer lattice or Eisenstein integer lattice.
Division of dual numbers is defined when the real part of the denominator is non-zero. The division process is analogous to complex division in that the denominator is multiplied by its conjugate in order to cancel the non-real parts. Therefore, to evaluate an expression of the form + +