Search results
Results from the WOW.Com Content Network
Chain (algebraic topology) Betti number; Euler characteristic. Genus; Riemann–Hurwitz formula; Singular homology; Cellular homology; Relative homology; Mayer–Vietoris sequence; Excision theorem; Universal coefficient theorem; Cohomology. List of cohomology theories; Cocycle class; Cup product; Cohomology ring; De Rham cohomology; Čech ...
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism , though usually most classify up to homotopy equivalence .
A topological algebra over a topological field is a topological vector space together with a bilinear multiplication ⋅ : A × A → A {\displaystyle \cdot :A\times A\to A} , ( a , b ) ↦ a ⋅ b {\displaystyle (a,b)\mapsto a\cdot b}
Topos theory is, in some sense, a generalization of classical point-set topology. One should therefore expect to see old and new instances of pathological behavior. For instance, there is an example due to Pierre Deligne of a nontrivial topos that has no points (see below for the definition of points of a topos).
edit] * The base point of a based space. X + {\displaystyle X_{+}} For an unbased space X, X + is the based space obtained by adjoining a disjoint base point. A absolute neighborhood retract abstract 1. Abstract homotopy theory Adams 1. John Frank Adams. 2. The Adams spectral sequence. 3. The Adams conjecture. 4. The Adams e -invariant. 5. The Adams operations. Alexander duality Alexander ...
Algebraic topology is a branch of mathematics in which tools from abstract algebra are used to study topological spaces Subcategories. This category has the following ...
In many mathematical branches, several structures defined on a topological space (e.g., a differentiable manifold) can be naturally localised or restricted to open subsets: typical examples include continuous real-valued or complex-valued functions, -times differentiable (real-valued or complex-valued) functions, bounded real-valued functions, vector fields, and sections of any vector bundle ...
The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property.