Search results
Results from the WOW.Com Content Network
For example, the number of times a given polynomial has a root at a given point is the multiplicity of that root. The notion of multiplicity is important to be able to count correctly without specifying exceptions (for example, double roots counted twice). Hence the expression, "counted with multiplicity".
The algebraic multiplicity μ A (λ i) of the eigenvalue is its multiplicity as a root of the characteristic polynomial, that is, the largest integer k such that (λ − λ i) k divides evenly that polynomial. [9] [25] [26] Suppose a matrix A has dimension n and d ≤ n distinct eigenvalues.
A root of a nonzero univariate polynomial P is a value a of x such that P(a) = 0. In other words, a root of P is a solution of the polynomial equation P(x) = 0 or a zero of the polynomial function defined by P. In the case of the zero polynomial, every number is a zero of the corresponding function, and the concept of root is rarely considered.
For polynomials with real or complex coefficients, it is not possible to express a lower bound of the root separation in terms of the degree and the absolute values of the coefficients only, because a small change on a single coefficient transforms a polynomial with multiple roots into a square-free polynomial with a small root separation, and ...
Graeffe's method – Algorithm for finding polynomial roots; Lill's method – Graphical method for the real roots of a polynomial; MPSolve – Software for approximating the roots of a polynomial with arbitrarily high precision; Multiplicity (mathematics) – Number of times an object must be counted for making true a general formula
In mathematics, Budan's theorem is a theorem for bounding the number of real roots of a polynomial in an interval, and computing the parity of this number. It was published in 1807 by François Budan de Boislaurent. A similar theorem was published independently by Joseph Fourier in 1820. Each of these theorems is a corollary of the other.
Graeffe's method works best for polynomials with simple real roots, though it can be adapted for polynomials with complex roots and coefficients, and roots with higher multiplicity. For instance, it has been observed [ 2 ] that for a root x ℓ + 1 = x ℓ + 2 = ⋯ = x ℓ + d {\displaystyle x_{\ell +1}=x_{\ell +2}=\dots =x_{\ell +d}} with ...
The minimal polynomial is often the same as the characteristic polynomial, but not always. For example, if A is a multiple aI n of the identity matrix, then its minimal polynomial is X − a since the kernel of aI n − A = 0 is already the entire space; on the other hand its characteristic polynomial is (X − a) n (the only eigenvalue is a ...