Search results
Results from the WOW.Com Content Network
The Navier–Stokes equations (/ n æ v ˈ j eɪ s t oʊ k s / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades ...
Burgers vortex layer or Burgers vortex sheet is a strained shear layer, which is a two-dimensional analogue of Burgers vortex. This is also an exact solution of the Navier–Stokes equations, first described by Albert A. Townsend in 1951. [8] The velocity field (,,) expressed in the Cartesian coordinates are
Projected streamlines of the Sullivan vortex on the axial -plane; is the origin.. In fluid dynamics, the Sullivan vortex is an exact solution of the Navier–Stokes equations describing a two-celled vortex in an axially strained flow, that was discovered by Roger D. Sullivan in 1959.
The Navier–Stokes equations are based on the assumption that the fluid, at the scale of interest, is a continuum – a continuous substance rather than discrete particles. Another necessary assumption is that all the fields of interest including pressure , flow velocity , density , and temperature are at least weakly differentiable .
Consider a cylindrical coordinate system ( ρ , φ , z ), with the z–axis the line around which the incompressible flow is axisymmetrical, φ the azimuthal angle and ρ the distance to the z–axis. Then the flow velocity components u ρ and u z can be expressed in terms of the Stokes stream function by: [1]
In fluid mechanics, non-dimensionalization of the Navier–Stokes equations is the conversion of the Navier–Stokes equation to a nondimensional form. This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain ...
Get answers to your AOL Mail, login, Desktop Gold, AOL app, password and subscription questions. Find the support options to contact customer care by email, chat, or phone number.
In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity. [ 1 ] The Euler equations can be applied to incompressible and compressible flows .