Search results
Results from the WOW.Com Content Network
During a concentric contraction, contractile muscle myofilaments of myosin and actin slide past each other, pulling the Z-lines together. During an eccentric contraction, the myofilaments slide past each other the opposite way, though the actual movement of the myosin heads during an eccentric contraction is not known.
during contraction, actin filaments move into the A bands and the H zone is filled up reducing its stretch, the I bands shorten, the Z line comes in contact with the A bands; and; the possible driving force of contraction is the actin-myosin linkages which depend on ATP hydrolysis by the myosin.
Vasoconstriction is the narrowing of the blood vessels resulting from contraction of the muscular wall of the vessels, in particular the large arteries and small arterioles. The process is the opposite of vasodilation, the widening of blood vessels. The process is particularly important in controlling hemorrhage and reducing
The higher the recruitment the stronger the muscle contraction will be. Motor units are generally recruited in order of smallest to largest (smallest motor neurons to largest motor neurons, and thus slow to fast twitch) as contraction increases. This is known as Henneman's size principle. [4]
A fused tetanic contraction is the strongest single-unit twitch in contraction. [6] When tetanized, the contracting tension in the muscle remains constant in a steady state. This is the maximal possible contraction. [3] During tetanic contractions, muscles can shorten, lengthen or remain constant length. [7]
Presynaptic neurotoxins, commonly known as β-neurotoxins, affect the presynaptic regions of the neuromuscular junction. The majority of these neurotoxins act by inhibiting the release of neurotransmitters, such as acetylcholine, into the synapse between neurons. However, some of these toxins have also been known to enhance neurotransmitter ...
Reciprocal inhibition is a neuromuscular process in which muscles on one side of a joint relax to allow the contraction of muscles on the opposite side, enabling smooth and coordinated movement. [1] This concept, introduced by Charles Sherrington, a pioneering neuroscientist, is also referred to as reflexive antagonism in some allied health fields.
An increase in preload results in an increased force of contraction by Starling's law of the heart; this does not require a change in contractility. An increase in afterload will increase contractility (through the Anrep effect). [4] An increase in heart rate will increase contractility (through the Bowditch effect). [4]