enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    The second law of thermodynamics establishes the concept of entropy as a physical property of a thermodynamic system. It predicts whether processes are forbidden despite obeying the requirement of conservation of energy as expressed in the first law of thermodynamics and provides necessary criteria for spontaneous processes. For example, the ...

  3. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    Traditionally, thermodynamics has recognized three fundamental laws, simply named by an ordinal identification, the first law, the second law, and the third law. [1] [2] [3] A more fundamental statement was later labelled as the zeroth law after the first three laws had been established.

  4. Entropy as an arrow of time - Wikipedia

    en.wikipedia.org/wiki/Entropy_as_an_arrow_of_time

    This is closely related to the second law of thermodynamics: For example, in a finite system interacting with finite heat reservoirs, entropy is equivalent to system-reservoir correlations, and thus both increase together. [5] Take for example (experiment A) a closed box that is, at the beginning, half-filled with ideal gas.

  5. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.

  6. Thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Thermodynamics

    The zeroth law was not initially recognized as a separate law of thermodynamics, as its basis in thermodynamical equilibrium was implied in the other laws. The first, second, and third laws had been explicitly stated already, and found common acceptance in the physics community before the importance of the zeroth law for the definition of ...

  7. Exergy efficiency - Wikipedia

    en.wikipedia.org/wiki/Exergy_efficiency

    Using first-law efficiencies alone, can lead one to believe a system is more efficient than it is in reality. So, the second-law efficiencies are needed to gain a more realistic picture of a system's effectiveness. From the second law of thermodynamics it can be demonstrated that no system can ever be 100% efficient.

  8. Clausius theorem - Wikipedia

    en.wikipedia.org/wiki/Clausius_theorem

    The Clausius inequality is a consequence of applying the second law of thermodynamics at each infinitesimal stage of heat transfer. The Clausius statement states that it is impossible to construct a device whose sole effect is the transfer of heat from a cool reservoir to a hot reservoir. [ 3 ]

  9. Principle of minimum energy - Wikipedia

    en.wikipedia.org/wiki/Principle_of_minimum_energy

    The principle of minimum energy is essentially a restatement of the second law of thermodynamics. It states that for a closed system, with constant external parameters and entropy, the internal energy will decrease and approach a minimum value at equilibrium. External parameters generally means the volume, but may include other parameters which ...