Search results
Results from the WOW.Com Content Network
Organotrophs use organic compounds as electron/hydrogen donors. Lithotrophs use inorganic compounds as electron/hydrogen donors.. The electrons or hydrogen atoms from reducing equivalents (electron donors) are needed by both phototrophs and chemotrophs in reduction-oxidation reactions that transfer energy in the anabolic processes of ATP synthesis (in heterotrophs) or biosynthesis (in autotrophs).
An autotroph is an organism that can convert abiotic sources of energy into energy stored in organic compounds, which can be used by other organisms. Autotrophs produce complex organic compounds (such as carbohydrates , fats , and proteins ) using carbon from simple substances such as carbon dioxide, [ 1 ] generally using energy from light or ...
Some microbes are heterotrophic (more precisely chemoorganoheterotrophic), using organic compounds as both carbon and energy sources. Heterotrophic microbes live off of nutrients that they scavenge from living hosts (as commensals or parasites) or find in dead organic matter of all kind (saprophages). Microbial metabolism is the main ...
Heterotrophic nutrition is a mode of nutrition in which organisms depend upon other organisms for food to survive. They can't make their own food like Green plants. Heterotrophic organisms have to take in all the organic substances they need to survive. All animals, certain types of fungi, and non-photosynthesizing plants are heterotrophic.
A heterotroph (/ ˈ h ɛ t ər ə ˌ t r oʊ f,-ˌ t r ɒ f /; [1] [2] from Ancient Greek ἕτερος (héteros) 'other' and τροφή (trophḗ) 'nutrition') is an organism that cannot produce its own food, instead taking nutrition from other sources of organic carbon, mainly plant or animal matter. In the food chain, heterotrophs are ...
Obligate mixotrophy: To support growth and maintenance, an organism must utilize both heterotrophic and autotrophic means. Obligate autotrophy with facultative heterotrophy: Autotrophy alone is sufficient for growth and maintenance, but heterotrophy may be used as a supplementary strategy when autotrophic energy is not enough, for example, when ...
A consumer is a heterotroph and a producer is an autotroph. Like sea angels, they take in organic moles by consuming other organisms, so they are commonly called consumers. Heterotrophs can be classified by what they usually eat as herbivores, carnivores, omnivores, or decomposers. [1]
A food web depicts a collection of polyphagous heterotrophic consumers that network and cycle the flow of energy and nutrients from a productive base of self-feeding autotrophs. [ 5 ] [ 6 ] [ 7 ] The base or basal species in a food web are those species without prey and can include autotrophs or saprophytic detritivores (i.e., the community of ...