enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]

  3. Imputation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Imputation_(statistics)

    If the data are missing completely at random, then listwise deletion does not add any bias, but it does decrease the power of the analysis by decreasing the effective sample size. For example, if 1000 cases are collected but 80 have missing values, the effective sample size after listwise deletion is 920.

  4. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    Overabundance of already collected data became an issue only in the "Big Data" era, and the reasons to use undersampling are mainly practical and related to resource costs. Specifically, while one needs a suitably large sample size to draw valid statistical conclusions, the data must be cleaned before it can be used. Cleansing typically ...

  5. Sampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Sampling_(statistics)

    Formulas, tables, and power function charts are well known approaches to determine sample size. Steps for using sample size tables: Postulate the effect size of interest, α, and β. Check sample size table [20] Select the table corresponding to the selected α; Locate the row corresponding to the desired power; Locate the column corresponding ...

  6. Fisher's exact test - Wikipedia

    en.wikipedia.org/wiki/Fisher's_exact_test

    Fisher's exact test is a statistical significance test used in the analysis of contingency tables. [1] [2] [3] Although in practice it is employed when sample sizes are small, it is valid for all sample sizes.

  7. Resampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Resampling_(statistics)

    the resample size is smaller than the sample size and; resampling is done without replacement. The advantage of subsampling is that it is valid under much weaker conditions compared to the bootstrap. In particular, a set of sufficient conditions is that the rate of convergence of the estimator is known and that the limiting distribution is ...

  8. Jackknife resampling - Wikipedia

    en.wikipedia.org/wiki/Jackknife_resampling

    Given a sample of size , a jackknife estimator can be built by aggregating the parameter estimates from each subsample of size () obtained by omitting one observation. [ 1 ] The jackknife technique was developed by Maurice Quenouille (1924–1973) from 1949 and refined in 1956.

  9. List of statistical software - Wikipedia

    en.wikipedia.org/wiki/List_of_statistical_software

    Statistical tests, charts, probabilities, and clear results. Automatically checks assumptions, interprets results, and outputs graphs, histograms, and charts. Online statistics calculators support the test statistic and the p-value and more results like effect size, test power, and normality level.