Search results
Results from the WOW.Com Content Network
The drag curve or drag polar is the relationship between the drag on an aircraft and other variables, such as lift, the coefficient of lift, angle-of-attack or speed. It may be described by an equation or displayed as a graph (sometimes called a "polar plot"). [1] Drag may be expressed as actual drag or the coefficient of drag.
Lift-induced drag, induced drag, vortex drag, or sometimes drag due to lift, in aerodynamics, is an aerodynamic drag force that occurs whenever a moving object redirects the airflow coming at it. This drag force occurs in airplanes due to wings or a lifting body redirecting air to cause lift and also in cars with airfoil wings that redirect air ...
Cross-sectional area distribution along the complete airframe determines wave drag, largely independent of the actual shape. The blue and light green shapes are roughly equal in area. The Whitcomb area rule , named after NACA engineer Richard Whitcomb and also called the transonic area rule , is a design procedure used to reduce an aircraft 's ...
Aerodynamic spin diagram: lift and drag coefficients vs. angle of attack. Many types of airplanes spin only if the pilot simultaneously yaws and stalls the airplane (intentionally or unintentionally). [5] Under these circumstances, one wing stalls, or stalls more deeply than the other.
Lift and drag are the two components of the total aerodynamic force acting on an aerofoil or aircraft.. In aerodynamics, the lift-to-drag ratio (or L/D ratio) is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air.
An aircraft is streamlined from nose to tail to reduce drag making it advantageous to keep the sideslip angle near zero, though an aircraft may be deliberately "sideslipped" to increase drag and descent rate during landing, to keep aircraft heading same as runway heading during cross-wind landings and during flight with asymmetric power.
Lift-induced drag (also called induced drag) is drag which occurs as the result of the creation of lift on a three-dimensional lifting body, such as the wing or propeller of an airplane. Induced drag consists primarily of two components: drag due to the creation of trailing vortices ( vortex drag ); and the presence of additional viscous drag ...
[23] [24] When the flow separates there is a large increase in drag. If the aircraft overrotates on take-off at too low a speed the increased drag can prevent the aircraft from leaving the ground. Two de Havilland Comets overran the end of the runway after overrotating. [25] [26] Loss of control may occur if one wing tip stalls in ground effect.