Search results
Results from the WOW.Com Content Network
As a practical application of this concept, a curve describing the motion of an object with a parameter of time must have C 1 continuity and its first derivative is differentiable—for the object to have finite acceleration. For smoother motion, such as that of a camera's path while making a film, higher orders of parametric continuity are ...
Differentiability is therefore a stronger regularity condition (condition describing the "smoothness" of a function) than continuity, and it is possible for a function to be continuous on the entire real line but not differentiable anywhere (see Weierstrass's nowhere differentiable continuous function). It is possible to discuss the existence ...
The concept of continuity for functions between metric spaces can be strengthened in various ways by limiting the way depends on and c in the definition above. Intuitively, a function f as above is uniformly continuous if the δ {\displaystyle \delta } does not depend on the point c .
A differentiable function. In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain.In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its domain.
A Lipschitz function g : R → R is absolutely continuous and therefore is differentiable almost everywhere, that is, differentiable at every point outside a set of Lebesgue measure zero. Its derivative is essentially bounded in magnitude by the Lipschitz constant, and for a < b , the difference g ( b ) − g ( a ) is equal to the integral of ...
In calculus and real analysis, absolute continuity is a smoothness property of functions that is stronger than continuity and uniform continuity. The notion of absolute continuity allows one to obtain generalizations of the relationship between the two central operations of calculus — differentiation and integration .
Only continuity of , not differentiability, is needed at the endpoints of the interval . No hypothesis of continuity needs to be stated if I {\displaystyle I} is an open interval , since the existence of a derivative at a point implies the continuity at this point.
The difference between uniform continuity and (ordinary) continuity is that, in uniform continuity there is a globally applicable (the size of a function domain interval over which function value differences are less than ) that depends on only , while in (ordinary) continuity there is a locally applicable that depends on both and . So uniform ...