enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    For example, the determinant of the complex conjugate of a complex matrix (which is also the determinant of its conjugate transpose) is the complex conjugate of its determinant, and for integer matrices: the reduction modulo of the determinant of such a matrix is equal to the determinant of the matrix reduced modulo (the latter determinant ...

  3. Identity matrix - Wikipedia

    en.wikipedia.org/wiki/Identity_matrix

    The identity matrix is the only idempotent matrix with non-zero determinant. That is, it is the only matrix such that: When multiplied by itself, the result is itself; All of its rows and columns are linearly independent. The principal square root of an identity matrix is itself, and this is its only positive-definite square root. However ...

  4. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/.../Jacobian_matrix_and_determinant

    When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and (if applicable) the determinant are often referred to simply as the Jacobian in literature. [4]

  5. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    The above example of matrices demonstrates that matrix product of top row and leftmost columns of involved matrices plays special role for to succeed. Let us mark consecutive versions of matrices with (), (), … and then let us write matrix product () = () in such way that these rows and columns are separated from the rest.

  6. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [1]If A is a differentiable map from the real numbers to n × n matrices, then

  7. Invariants of tensors - Wikipedia

    en.wikipedia.org/wiki/Invariants_of_tensors

    A real tensor in 3D (i.e., one with a 3x3 component matrix) has as many as six independent invariants, three being the invariants of its symmetric part and three characterizing the orientation of the axial vector of the skew-symmetric part relative to the principal directions of the symmetric part.

  8. Rule of Sarrus - Wikipedia

    en.wikipedia.org/wiki/Rule_of_Sarrus

    Rule of Sarrus: The determinant of the three columns on the left is the sum of the products along the down-right diagonals minus the sum of the products along the up-right diagonals. In matrix theory , the rule of Sarrus is a mnemonic device for computing the determinant of a 3 × 3 {\displaystyle 3\times 3} matrix named after the French ...

  9. Schur complement - Wikipedia

    en.wikipedia.org/wiki/Schur_complement

    For example, when or is zero, we can eliminate the associated rows of the coefficient matrix without any changes to the rest of the output vector. If v {\displaystyle v} is null then the above equation for x {\displaystyle x} reduces to x = ( A − 1 + A − 1 B S − 1 C A − 1 ) u {\displaystyle x=\left(A^{-1}+A^{-1}BS^{-1}CA^{-1}\right)u ...