enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Limit of a sequence - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_sequence

    In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the symbol (e.g., ). [1] If such a limit exists and is finite, the sequence is called convergent. [2]

  3. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    The different notions of convergence capture different properties about the sequence, with some notions of convergence being stronger than others. For example, convergence in distribution tells us about the limit distribution of a sequence of random variables. This is a weaker notion than convergence in probability, which tells us about the ...

  4. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    A series is convergent (or converges) if and only if the sequence (,,, … ) {\displaystyle (S_{1},S_{2},S_{3},\dots )} of its partial sums tends to a limit ; that means that, when adding one a k {\displaystyle a_{k}} after the other in the order given by the indices , one gets partial sums that become closer and closer to a given number.

  5. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    Cauchy sequences are closely related to convergent sequences. In fact, for sequences of real numbers they are equivalent: any Cauchy sequence is convergent. In general metric spaces, it continues to hold that convergent sequences are also Cauchy. But the converse is not true: not every Cauchy sequence is convergent in a general metric space.

  6. Set-theoretic limit - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_limit

    In mathematics, the limit of a sequence of sets,, … (subsets of a common set ) is a set whose elements are determined by the sequence in either of two equivalent ways: (1) by upper and lower bounds on the sequence that converge monotonically to the same set (analogous to convergence of real-valued sequences) and (2) by convergence of a sequence of indicator functions which are themselves ...

  7. Uniform convergence - Wikipedia

    en.wikipedia.org/wiki/Uniform_convergence

    A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = ⁡ (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).

  8. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let { a n } n = 1 ∞ {\displaystyle \left\{a_{n}\right\}_{n=1}^{\infty }} be a sequence of positive numbers.

  9. Monotone convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Monotone_convergence_theorem

    In more advanced mathematics the monotone convergence theorem usually refers to a fundamental result in measure theory due to Lebesgue and Beppo Levi that says that for sequences of non-negative pointwise-increasing measurable functions (), taking the integral and the supremum can be interchanged with the result being finite if either one is ...