Search results
Results from the WOW.Com Content Network
This structure is often confused for a body-centered cubic structure because the arrangement of atoms is the same. However, the caesium chloride structure has a basis composed of two different atomic species. In a body-centered cubic structure, there would be translational symmetry along the [111] direction.
In a crystal structure the coordination geometry of an atom is the geometrical pattern of coordinating atoms where the definition of coordinating atoms depends on the bonding model used. [1] For example, in the rock salt ionic structure each sodium atom has six near neighbour chloride ions in an octahedral geometry and each chloride has ...
For the body-centered cubic Bravais lattice (cI), we use the points ... This model for disorder in a crystal starts with the structure factor of a perfect crystal.
For face-centered cubic (fcc) and body-centered cubic (bcc) lattices, the primitive lattice vectors are not orthogonal. However, in these cases the Miller indices are conventionally defined relative to the lattice vectors of the cubic supercell and hence are again simply the Cartesian directions.
The Wigner–Seitz cell of the face-centered cubic lattice is a rhombic dodecahedron. [9] In mathematics, it is known as the rhombic dodecahedral honeycomb . The Wigner–Seitz cell of the body-centered tetragonal lattice that has lattice constants with c / a > 2 {\displaystyle c/a>{\sqrt {2}}} is the elongated dodecahedron .
The primitive unit cell for the body-centered cubic crystal structure contains several fractions taken from nine atoms (if the particles in the crystal are atoms): one on each corner of the cube and one atom in the center. Because the volume of each of the eight corner atoms is shared between eight adjacent cells, each BCC cell contains the ...
Octahedral (red) and tetrahedral (blue) interstitial symmetry polyhedra in a face-centered cubic lattice. The actual interstitial atom would ideally be in the middle of one of the polyhedra. A close packed unit cell, both face-centered cubic and hexagonal close packed, can form two different shaped holes.
I body centered (from the German Innenzentriert) F face centered (from the German Flächenzentriert) A centered on A faces only; B centered on B faces only; C centered on C faces only; R rhombohedral; A reflection plane m within the point groups can be replaced by a glide plane, labeled as a, b, or c depending on which axis the glide is along.