enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Grothendieck's Galois theory - Wikipedia

    en.wikipedia.org/wiki/Grothendieck's_Galois_theory

    It provides, in the classical setting of field theory, an alternative perspective to that of Emil Artin based on linear algebra, which became standard from about the 1930s. The approach of Alexander Grothendieck is concerned with the category-theoretic properties that characterise the categories of finite G -sets for a fixed profinite group G .

  3. Algebraic topology - Wikipedia

    en.wikipedia.org/wiki/Algebraic_topology

    Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism , though usually most classify up to homotopy equivalence .

  4. Joseph J. Rotman - Wikipedia

    en.wikipedia.org/wiki/Joseph_J._Rotman

    An Introduction to Algebraic Topology (1988), Springer-Verlag; ISBN 0-387-96678-1 An Introduction to the Theory of Groups (1995), Springer-Verlag; ISBN 0-387-94285-8 A First Course in Abstract Algebra (2000), Prentice Hall; ISBN 0-13-011584-3

  5. Thom space - Wikipedia

    en.wikipedia.org/wiki/Thom_space

    A Concise Course in Algebraic Topology. University of Chicago Press. pp. 183–198. ISBN 0-226-51182-0. This textbook gives a detailed construction of the Thom class for trivial vector bundles, and also formulates the theorem in case of arbitrary vector bundles. Stong, Robert E. (1968). Notes on cobordism theory. Princeton University Press ...

  6. Products in algebraic topology - Wikipedia

    en.wikipedia.org/wiki/Products_in_algebraic_topology

    Download QR code; Print/export Download as PDF; ... A., Algebraic Topology, Cambridge University Press (2002) ISBN ...

  7. Homotopy lifting property - Wikipedia

    en.wikipedia.org/wiki/Homotopy_lifting_property

    Hatcher, Allen (2002), Algebraic Topology, Cambridge: Cambridge University Press, ISBN 0-521-79540-0. Jean-Pierre Marquis (2006) "A path to Epistemology of Mathematics: Homotopy theory", pages 239 to 260 in The Architecture of Modern Mathematics, J. Ferreiros & J.J. Gray, editors, Oxford University Press ISBN 978-0-19-856793-6

  8. Topological pair - Wikipedia

    en.wikipedia.org/wiki/Topological_pair

    In mathematics, more specifically algebraic topology, a pair (,) is shorthand for an inclusion of topological spaces:.Sometimes is assumed to be a cofibration.A morphism from (,) to (′, ′) is given by two maps : ′ and : ′ such that ′ =.

  9. Higher category theory - Wikipedia

    en.wikipedia.org/wiki/Higher_category_theory

    While this concept is too strict for some purposes in for example, homotopy theory, where "weak" structures arise in the form of higher categories, [2] strict cubical higher homotopy groupoids have also arisen as giving a new foundation for algebraic topology on the border between homology and homotopy theory; see the article Nonabelian ...