Search results
Results from the WOW.Com Content Network
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer
The heat transfer coefficient is often calculated from the Nusselt number (a dimensionless number). There are also online calculators available specifically for Heat-transfer fluid applications. Experimental assessment of the heat transfer coefficient poses some challenges especially when small fluxes are to be measured (e.g. < 0.2 W/cm 2). [1] [2]
In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol ) is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure–volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure.
The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.
This equation has been derived in the case of reversible changes. However, since U , S , and V are thermodynamic state functions that depend on only the initial and final states of a thermodynamic process, the above relation holds also for non-reversible changes.
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
The Gibbs–Helmholtz equation is a thermodynamic equation used to calculate changes in the Gibbs free energy of a system as a function of temperature.It was originally presented in an 1882 paper entitled "Die Thermodynamik chemischer Vorgänge" by Hermann von Helmholtz.
For a property R that changes when the temperature changes by dT, the temperature coefficient α is defined by the following equation: d R R = α d T {\displaystyle {\frac {dR}{R}}=\alpha \,dT} Here α has the dimension of an inverse temperature and can be expressed e.g. in 1/K or K −1 .