Search results
Results from the WOW.Com Content Network
In decision theory, the weighted sum model (WSM), [1] [2] also called weighted linear combination (WLC) [3] or simple additive weighting (SAW), [4] is the best known and simplest multi-criteria decision analysis (MCDA) / multi-criteria decision making method for evaluating a number of alternatives in terms of a number of decision criteria.
Weighted least squares (WLS), also known as weighted linear regression, [1] [2] is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression.
A weight function is a mathematical device used when performing a sum, integral, or average to give some elements more "weight" or influence on the result than other elements in the same set. The result of this application of a weight function is a weighted sum or weighted average.
The weighted product model (WPM) is a popular multi-criteria decision analysis (MCDA) / multi-criteria decision making (MCDM) method. It is similar to the weighted sum model (WSM) in that it produces a simple score, but has the very important advantage of overcoming the issue of 'adding apples and pears' i.e. adding together quantities measured in different units.
From a model based perspective, we are interested in estimating the variance of the weighted mean when the different are not i.i.d random variables. An alternative perspective for this problem is that of some arbitrary sampling design of the data in which units are selected with unequal probabilities (with replacement).
Weighted sums (Gass & Saaty, 1955 [16]) If we combine the multiple criteria into a single criterion by multiplying each criterion with a positive weight and summing up the weighted criteria, then the solution to the resulting single criterion problem is a special efficient solution.
The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...
In data analysis based on the Rasch model, the reduced chi-squared statistic is called the outfit mean-square statistic, and the information-weighted reduced chi-squared statistic is called the infit mean-square statistic. [21]