Search results
Results from the WOW.Com Content Network
A tectonic phase or deformation phase is in structural geology and petrology a phase in which tectonic movement or metamorphism took place. Tectonic phases can be extensional or compressional in nature. When numerous subsequent compressional tectonic phases share the same geodynamic cause (usually some plate tectonic mechanism) this is called ...
Tectonophysics is concerned with movements in the Earth's crust and deformations over scales from meters to thousands of kilometers. [2] These govern processes on local and regional scales and at structural boundaries, such as the destruction of continental crust (e.g. gravitational instability) and oceanic crust (e.g. subduction), convection in the Earth's mantle (availability of melts), the ...
The relative movement of the plates typically ranges from zero to 10 cm annually. Faults tend to be geologically active, experiencing earthquakes, volcanic activity, mountain-building, and oceanic trench formation. Tectonic plates are composed of the oceanic lithosphere and the thicker continental lithosphere, each topped by its own kind of crust.
Tectonic uplift is the geologic uplift of Earth's surface that is attributed to plate tectonics. While isostatic response is important, an increase in the mean elevation of a region can only occur in response to tectonic processes of crustal thickening (such as mountain building events), changes in the density distribution of the crust and ...
Roger Clark, lecturer in geophysics at Leeds University said in the journal Nature in 1996, responding to a newspaper report that there had been two secret Soviet programs, "Mercury" and "Volcano", aimed at developing a "tectonic weapon" that could set off earthquakes from great distance by manipulating electromagnetism, said "We don't think it is impossible, or wrong, but past experience ...
Extensional tectonics is associated with the stretching and thinning of the crust or the lithosphere.This type of tectonics is found at divergent plate boundaries, in continental rifts, during and after a period of continental collision caused by the lateral spreading of the thickened crust formed, at releasing bends in strike-slip faults, in back-arc basins, and on the continental end of ...
Tectonic subsidence is the sinking of the Earth's crust on a large scale, relative to crustal-scale features or the geoid. [1] The movement of crustal plates and accommodation spaces produced by faulting [2] brought about subsidence on a large scale in a variety of environments, including passive margins, aulacogens, fore-arc basins, foreland basins, intercontinental basins and pull-apart basins.
Surface map of oceanic crust showing the generation of younger (red) crust and eventual destruction of older (blue) crust. This demonstrates the crustal spatial evolution at the Earth's surface dictated by plate tectonics. Earth's crustal evolution involves the formation, destruction and renewal of the rocky outer shell at that planet's surface.