Search results
Results from the WOW.Com Content Network
In mathematics, Green's identities are a set of three identities in vector calculus relating the bulk with the boundary of a region on which differential operators act. They are named after the mathematician George Green , who discovered Green's theorem .
This article lists mathematical identities, that is, identically true relations holding in mathematics. Bézout's identity (despite its usual name, it is not, properly speaking, an identity) Binet-cauchy identity
In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D (surface in ) bounded by C. It is the two-dimensional special case of Stokes' theorem (surface in R 3 {\displaystyle \mathbb {R} ^{3}} ).
There are two lists of mathematical identities related to vectors: Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.
For elements a and b of S, Green's relations L, R and J are defined by . a L b if and only if S 1 a = S 1 b.; a R b if and only if a S 1 = b S 1.; a J b if and only if S 1 a S 1 = S 1 b S 1.; That is, a and b are L-related if they generate the same left ideal; R-related if they generate the same right ideal; and J-related if they generate the same two-sided ideal.
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.
List of logarithmic identities; List of mathematical functions; List of mathematical identities; List of mathematical proofs; List of misnamed theorems; List of scientific laws; List of theories; Most of the results below come from pure mathematics, but some are from theoretical physics, economics, and other applied fields.
In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.