Search results
Results from the WOW.Com Content Network
The history of modems is the attempt at increasing the bit rate over a fixed bandwidth (and therefore a fixed maximum symbol rate), leading to increasing bits per symbol. For example, ITU-T V.29 specifies 4 bits per symbol, at a symbol rate of 2,400 baud, giving an effective bit rate of 9,600 bits per second.
In digital telecommunications the data is usually binary, so the number of points in the grid is typically a power of 2 (2, 4, 8, …), corresponding to the number of bits per symbol. The simplest and most commonly used QAM constellations consist of points arranged in a square, i.e. 16-QAM, 64-QAM and 256-QAM (even powers of two).
Differential coding: In order to get a rotation-invariant constellation, this unit shall apply a differential encoding of the two Most Significant Bits (MSBs) of each symbol. QAM Mapper: the bit sequence is mapped into a base-band digital sequence of complex symbols. There are 5 allowed modulation modes: 16-QAM, 32-QAM, 64-QAM, 128-QAM, 256-QAM.
Fiber optic systems can use quadrature amplitude modulation to maximize throughput. 16QAM uses a 16-point constellation to send four bits per symbol, with speeds on the order of 200 or 400 gigabits per second. [65] [66] 64QAM uses a 64-point constellation to send six bits per symbol, with speeds up to 65 terabits per second. Although this ...
In a 6 MHz channel, the data rate is at most 36 Mbit/s (for 64-QAM or 8-VSB); the 8-VSB ATSC achieves a data rate of 19.3926 Mbit/s while the 64-QAM J.83b achieves a data rate of 26.970 Mbit/s. While both systems use concatenated trellis/RS coding, the differences in symbol rate and FEC redundancy account for the differences in rate.
Mapper: The digital bit sequence is mapped into a base band modulated sequence of complex symbols. There are three valid modulation schemes: QPSK , 16- QAM , 64-QAM. Frame adaptation: the complex symbols are grouped in blocks of constant length (1512, 3024, or 6048 symbols per block).
DMT allocates from 2 to 15 bits per channel (bin). As line conditions change, bit swapping allows the modem to swap bits around different channels, without retraining, as each channel becomes more or less capable. If bit swapping is disabled then this does not happen and the modem needs to retrain in order to adapt to changing line conditions.
A diagram with four points, for example, represents a modulation scheme that can separately encode all 4 combinations of two bits: 00, 01, 10, and 11, and so can transmit two bits per symbol. Thus in general a modulation with N {\displaystyle N} constellation points transmits log 2 N {\displaystyle \log _{2}N} bits per symbol.