Search results
Results from the WOW.Com Content Network
The Elephant Curve, also known as the Lakner-Milanovic graph or the global growth incidence curve, is a graph that illustrates the unequal distribution of income growth for individuals belonging to different income groups. [1] The original graph was published in 2013 and illustrates the change in income growth that occurred from 1988 to 2008.
Jensen's inequality generalizes the statement that a secant line of a convex function lies above its graph. Visualizing convexity and Jensen's inequality. In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function.
In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. [1] It is used most often to compare two numbers on the number line by their size. The main types of inequality are less than (<) and greater than (>).
A complete handout about the Lorenz curve including various applications, including an Excel spreadsheet graphing Lorenz curves and calculating Gini coefficients as well as coefficients of variation. LORENZ 3.0 is a Mathematica notebook which draw sample Lorenz curves and calculates Gini coefficients and Lorenz asymmetry coefficients from data ...
In additive combinatorics, the Plünnecke–Ruzsa inequality is an inequality that bounds the size of various sumsets of a set , given that there is another set so that + is not much larger than . A slightly weaker version of this inequality was originally proven and published by Helmut Plünnecke (1970). [ 1 ]
A plot of intergenerational immobility against inequality, with the US highlighted in red (data from 2012) The "Great Gatsby Curve" is the term given to the positive empirical relationship between cross-sectional income inequality and persistence of income across generations. [1]
A cycle graph in which the distances disobey Ptolemy's inequality. Ptolemy's inequality holds more generally in any inner product space, [1] [9] and whenever it is true for a real normed vector space, that space must be an inner product space. [9] [10] For other types of metric space, the inequality may or may not be
Proof [2]. Since + =, =. A graph = on the -plane is thus also a graph =. From sketching a visual representation of the integrals of the area between this curve and the axes, and the area in the rectangle bounded by the lines =, =, =, =, and the fact that is always increasing for increasing and vice versa, we can see that upper bounds the area of the rectangle below the curve (with equality ...