Search results
Results from the WOW.Com Content Network
A neutron star merger is the stellar collision of neutron stars. When two neutron stars fall into mutual orbit, they gradually spiral inward due to the loss of energy emitted as gravitational radiation. [1] When they finally meet, their merger leads to the formation of either a more massive neutron star, or—if the mass of the remnant exceeds ...
This artist's impression shows a kilonova produced by two colliding neutron stars. On October 16, 2017, the LIGO and Virgo collaborations announced the first detection of a gravitational wave (GW170817 [9]) which would correspond with electromagnetic observations, and demonstrated that the source was a binary neutron star merger. [10]
A Type Ia supernova (read: "type one-A") is a type of supernova that occurs in binary systems (two stars orbiting one another) in which one of the stars is a white dwarf. The other star can be anything from a giant star to an even smaller white dwarf. [1] Physically, carbon–oxygen white dwarfs with a low rate of rotation are limited to below ...
The origin and properties (masses and spins) of a double neutron star system like GW170817 are the result of a long sequence of complex binary star interactions. [41] The gravitational wave signal indicated that it was produced by the collision of two neutron stars [9] [18] [20] [42] with a total mass of 2.82 +0.47 −0.09 solar masses (M ☉). [2]
A neutron star is the collapsed core of a massive supergiant star. It results from the supernova explosion of a massive star—combined with gravitational collapse—that compresses the core past white dwarf star density to that of atomic nuclei.
The similarities between the two events, in terms of gamma ray, optical, and x-ray emissions, as well as to the nature of the associated host galaxies, were considered "striking", suggesting the two separate events may both be the result of the merger of neutron stars, and both may be a kilonova, which may be more common in the universe than ...
Space-based detectors like LISA should detect objects such as binaries consisting of two white dwarfs, and AM CVn stars (a white dwarf accreting matter from its binary partner, a low-mass helium star), and also observe the mergers of supermassive black holes and the inspiral of smaller objects (between one and a thousand solar masses) into such ...
An intermediate-mass binary pulsar (IMBP) is a pulsar-white dwarf binary system with a relatively long spin period of around 10–200 ms consisting of a white dwarf with a relatively high mass of approximately . [7] The spin periods, magnetic field strengths, and orbital eccentricities of IMBPs are significantly larger than those of low mass binary pulsars (LMBPs). [7]