enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    Example of a naive Bayes classifier depicted as a Bayesian Network. In statistics, naive Bayes classifiers are a family of linear "probabilistic classifiers" which assumes that the features are conditionally independent, given the target class. The strength (naivety) of this assumption is what gives the classifier its name.

  3. Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Bayes_classifier

    In statistical classification, the Bayes classifier is the classifier having the smallest probability of misclassification of all classifiers using the same set of features. [ 1 ] Definition

  4. Bayes error rate - Wikipedia

    en.wikipedia.org/wiki/Bayes_error_rate

    Download QR code; Print/export Download as PDF; Printable version; In other projects ... Naive Bayes classifier; References This page was last edited on ...

  5. Bayesian programming - Wikipedia

    en.wikipedia.org/wiki/Bayesian_programming

    The classifier should furthermore be able to adapt to its user and to learn from experience. Starting from an initial standard setting, the classifier should modify its internal parameters when the user disagrees with its own decision. It will hence adapt to the user's criteria to differentiate between non-spam and spam.

  6. Bayesian classifier - Wikipedia

    en.wikipedia.org/wiki/Bayesian_classifier

    In computer science and statistics, Bayesian classifier may refer to: any classifier based on Bayesian probability; a Bayes classifier, one that always chooses the class of highest posterior probability in case this posterior distribution is modelled by assuming the observables are independent, it is a naive Bayes classifier

  7. Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_statistics

    Bayes' theorem describes the conditional probability of an event based on data as well as prior information or beliefs about the event or conditions related to the event. [3] [4] For example, in Bayesian inference, Bayes' theorem can be used to estimate the parameters of a probability distribution or statistical model. Since Bayesian statistics ...

  8. Bayesian linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_linear_regression

    Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...

  9. Multiclass classification - Wikipedia

    en.wikipedia.org/wiki/Multiclass_classification

    This section discusses strategies of extending the existing binary classifiers to solve multi-class classification problems. Several algorithms have been developed based on neural networks, decision trees, k-nearest neighbors, naive Bayes, support vector machines and extreme learning machines to address multi-class classification problems ...