Search results
Results from the WOW.Com Content Network
A fundamental tool in robot kinematics is the kinematics equations of the kinematic chains that form the robot. These non-linear equations are used to map the joint parameters to the configuration of the robot system. Kinematics equations are also used in biomechanics of the skeleton and computer animation of articulated characters.
Robotics engineering is a branch of engineering that focuses on the conception, design, manufacturing, and operation of robots.It involves a multidisciplinary approach, drawing primarily from mechanical, electrical, software, and artificial intelligence (AI) engineering.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
In robot kinematics, forward kinematics refers to the use of the kinematic equations of a robot to compute the position of the end-effector from specified values for the joint parameters. [ 1 ] The kinematics equations of the robot are used in robotics , computer games , and animation .
Victor Scheinman's MIT Arm, built for MIT's Artificial Intelligence Lab ca. 1972, the first arm designed with a 321 kinematic structure. 321 kinematic structure is a design method for robotic arms (serial manipulators), invented by Donald L. Pieper and used in most commercially produced robotic arms.
Robotics is the branch of technology that deals with the design, construction, operation, structural disposition, manufacture and application of robots. [1] Robotics is related to the sciences of electronics, engineering, mechanics, and software. [2]
OpenRAVE was founded by Rosen Diankov at the Quality of Life Technology Center in the Carnegie Mellon University Robotics Institute. [3] It was inspired from the RAVE simulator James Kuffner had started developing in 1995 and used for a lot of his experiments.
The velocity obstacle VO AB for a robot A, with position x A, induced by another robot B, with position x B and velocity v B.. In robotics and motion planning, a velocity obstacle, commonly abbreviated VO, is the set of all velocities of a robot that will result in a collision with another robot at some moment in time, assuming that the other robot maintains its current velocity. [1]