Ad
related to: generator will start but dies quickly fast and faster than full load
Search results
Results from the WOW.Com Content Network
As an example, consider the use of a 10 hp, 1760 r/min, 440 V, three-phase induction motor (a.k.a. induction electrical machine in an asynchronous generator regime) as asynchronous generator. The full-load current of the motor is 10 A and the full-load power factor is 0.8. Required capacitance per phase if capacitors are connected in delta:
This is far quicker than a base load power station which can take 12 hours from cold, and faster than a gas turbine, which can take several minutes. Whilst diesel is very expensive in fuel terms, they are only used a few hundred hours per year in this duty, and its availability can prevent the need for a base load station running inefficiently ...
An electrical grid may have many types of generators and loads; generators must be controlled to maintain stable operation of the system. In an electric power system, automatic generation control (AGC) is a system for adjusting the power output of multiple generators at different power plants, in response to changes in the load.
Droop speed control is a control mode used for AC electrical power generators, whereby the power output of a generator reduces as the line frequency increases. It is commonly used as the speed control mode of the governor of a prime mover driving a synchronous generator connected to an electrical grid.
An engine–generator is the combination of an electrical generator and an engine (prime mover) mounted together to form a single piece of equipment. This combination is also called an engine–generator set or a gen-set. In many contexts, the engine is taken for granted and the combined unit is simply called a generator. An engine–generator ...
Due to high cost of a generator, a set of sensors and limiters will trigger the alarm when the generator approaches the capability-set boundary and, if no action is taken by the operator, will disconnect the generator from the grid. [3] D-curve expands with cooling. The D-curve for a particular generator can be expanded by improved cooling.
The load supplied by the generator determines the voltage. If the load is inductive, then the angle between the rotor and stator fields will be greater than 90°, which corresponds to an increased generator voltage. This is known as an overexcited generator. The opposite is true for a generator supplying a capacitive load, which is known as an ...
For this to work the motor must see a reactive load, and either be connected to a grid supply or an arrangement of capacitors to provide excitation current. For the motor to work as a generator instead of a motor the rotor must be spun faster than its stator's synchronous speed.
Ad
related to: generator will start but dies quickly fast and faster than full load