enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Asymptotic analysis - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_analysis

    A distribution is an ordered set of random variables Z i for i = 1, …, n, for some positive integer n. An asymptotic distribution allows i to range without bound, that is, n is infinite. A special case of an asymptotic distribution is when the late entries go to zero—that is, the Z i go to 0 as i goes to infinity. Some instances of ...

  3. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    The concept of multiple limit can extend to the limit at infinity, in a way similar to that of a single variable function. For f : S × T → R , {\displaystyle f:S\times T\to \mathbb {R} ,} we say the double limit of f as x and y approaches infinity is L , written lim x → ∞ y → ∞ f ( x , y ) = L {\displaystyle \lim _{{x\to \infty ...

  4. Asymptotic theory (statistics) - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_theory_(statistics)

    The law states that for a sequence of independent and identically distributed (IID) random variables X 1, X 2, ..., if one value is drawn from each random variable and the average of the first n values is computed as X n, then the X n converge in probability to the population mean E[X i] as n → ∞. [2] In asymptotic theory, the standard ...

  5. Asymptotic distribution - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_distribution

    Then as approaches infinity, the random variables () converge in distribution to a normal (,): [1] The central limit theorem gives only an asymptotic distribution. As an approximation for a finite number of observations, it provides a reasonable approximation only when close to the peak of the normal distribution; it requires a very large ...

  6. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    In general, any infinite series is the limit of its partial sums. For example, an analytic function is the limit of its Taylor series, within its radius of convergence. = =. This is known as the harmonic series. [6]

  7. Asymptote - Wikipedia

    en.wikipedia.org/wiki/Asymptote

    If this limit fails to exist then there is no oblique asymptote in that direction, even should the limit defining m exist. Otherwise y = mx + n is the oblique asymptote of ƒ ( x ) as x tends to a .

  8. Asymptotic expansion - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_expansion

    In mathematics, an asymptotic expansion, asymptotic series or Poincaré expansion (after Henri Poincaré) is a formal series of functions which has the property that truncating the series after a finite number of terms provides an approximation to a given function as the argument of the function tends towards a particular, often infinite, point.

  9. Asymptotology - Wikipedia

    en.wikipedia.org/wiki/Asymptotology

    The field of asymptotics is normally first encountered in school geometry with the introduction of the asymptote, a line to which a curve tends at infinity.The word Ασύμπτωτος (asymptotos) in Greek means non-coincident and puts strong emphasis on the point that approximation does not turn into coincidence.