enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Deconvolution - Wikipedia

    en.wikipedia.org/wiki/Deconvolution

    In mathematics, deconvolution is the inverse of convolution. Both operations are used in signal processing and image processing. For example, it may be possible to recover the original signal after a filter (convolution) by using a deconvolution method with a certain degree of accuracy. [1]

  3. Inverse Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Inverse_Laplace_transform

    This result was first proven by Mathias Lerch in 1903 and is known as Lerch's theorem. [1] [2] The Laplace transform and the inverse Laplace transform together have a number of properties that make them useful for analysing linear dynamical systems.

  4. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain).

  5. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    In mathematics, the Laplace transform, named after Pierre-Simon Laplace (/ l ə ˈ p l ɑː s /), is an integral transform that converts a function of a real variable (usually , in the time domain) to a function of a complex variable (in the complex-valued frequency domain, also known as s-domain, or s-plane).

  6. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    A similar result holds for compact groups (not necessarily abelian): the matrix coefficients of finite-dimensional unitary representations form an orthonormal basis in L 2 by the Peter–Weyl theorem, and an analog of the convolution theorem continues to hold, along with many other aspects of harmonic analysis that depend on the Fourier transform.

  7. Integral transform - Wikipedia

    en.wikipedia.org/wiki/Integral_transform

    Employing the inverse transform, i.e., the inverse procedure of the original Laplace transform, one obtains a time-domain solution. In this example, polynomials in the complex frequency domain (typically occurring in the denominator) correspond to power series in the time domain, while axial shifts in the complex frequency domain correspond to ...

  8. Multidimensional transform - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_transform

    The multidimensional Laplace transform is useful for the solution of boundary value problems. Boundary value problems in two or more variables characterized by partial differential equations can be solved by a direct use of the Laplace transform. [3] The Laplace transform for an M-dimensional case is defined [3] as

  9. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    The Laplace–Beltrami operator, when applied to a function, is the trace (tr) of the function's Hessian: = ⁡ (()) where the trace is taken with respect to the inverse of the metric tensor. The Laplace–Beltrami operator also can be generalized to an operator (also called the Laplace–Beltrami operator) which operates on tensor fields, by a ...