Search results
Results from the WOW.Com Content Network
Deamination is the removal of an amino group from a molecule. [1] Enzymes that catalyse this reaction are called deaminases.. In the human body, deamination takes place primarily in the liver; however, it can also occur in the kidney.
Adenosine deaminase (also known as adenosine aminohydrolase, or ADA) is an enzyme (EC 3.5.4.4) involved in purine metabolism. It is needed for the breakdown of adenosine from food and for the turnover of nucleic acids in tissues.
Porphobilinogen deaminase (hydroxymethylbilane synthase, or uroporphyrinogen I synthase) is an enzyme (EC 2.5.1.61) that in humans is encoded by the HMBS gene.
Other names in common use include acylamidase, acylase, amidohydrolase, deaminase, fatty acylamidase, and N-acetylaminohydrolase. This enzyme participates in 6 metabolic pathways : urea cycle and metabolism of amino groups , phenylalanine metabolism , tryptophan metabolism , cyanoamino acid metabolism , benzoate degradation via coa ligation ...
Threonine ammonia-lyase (EC 4.3.1.19, systematic name L-threonine ammonia-lyase (2-oxobutanoate-forming), also commonly referred to as threonine deaminase or threonine dehydratase, is an enzyme responsible for catalyzing the conversion of L-threonine into α-ketobutyrate and ammonia:
Guanine deaminase also known as cypin, guanase, guanine aminase, GAH, and guanine aminohydrolase is an aminohydrolase enzyme which converts guanine to xanthine. [ 5 ] [ 6 ] [ 7 ] Cypin is a major cytosolic protein that interacts with PSD-95 .
Cytidine deaminase is an enzyme that in humans is encoded by the CDA gene. [5] [6] [7] This gene encodes an enzyme involved in pyrimidine salvaging. The encoded protein forms a homotetramer that catalyzes the irreversible hydrolytic deamination of cytidine and deoxycytidine to uridine and deoxyuridine, respectively. It is one of several ...
A nucleotidase creates adenosine, then adenosine deaminase creates inosine; Alternatively, AMP deaminase creates inosinic acid, then a nucleotidase creates inosine; Purine nucleoside phosphorylase acts upon inosine to create hypoxanthine; Xanthine oxidase catalyzes the biotransformation of hypoxanthine to xanthine