Search results
Results from the WOW.Com Content Network
Thermal diffusivity is a contrasting measure to thermal effusivity. [6] [7] In a substance with high thermal diffusivity, heat moves rapidly through it because the substance conducts heat quickly relative to its volumetric heat capacity or 'thermal bulk'. Thermal diffusivity is often measured with the flash method.
The higher the thermal diffusivity of the sample, the faster the energy reaches the backside. A laser flash apparatus (LFA) to measure thermal diffusivity over a broad temperature range, is shown on the right hand side. In a one-dimensional, adiabatic case the thermal diffusivity is calculated from this temperature rise as follows:
D is the mass diffusivity (m 2 /s). μ is the dynamic viscosity of the fluid (Pa·s = N·s/m 2 = kg/m·s) ρ is the density of the fluid (kg/m 3) Pe is the Peclet Number; Re is the Reynolds Number. The heat transfer analog of the Schmidt number is the Prandtl number (Pr). The ratio of thermal diffusivity to mass diffusivity is the Lewis number ...
Small values of the Prandtl number, Pr ≪ 1, means the thermal diffusivity dominates. Whereas with large values, Pr ≫ 1, the momentum diffusivity dominates the behavior. For example, the listed value for liquid mercury indicates that the heat conduction is more significant compared to convection, so thermal diffusivity is dominant. However ...
α is the thermal diffusivity, D is the mass diffusivity, λ is the thermal conductivity, ρ is the density, D im is the mixture-averaged diffusion coefficient, c p is the specific heat capacity at constant pressure. In the field of fluid mechanics, many sources define the Lewis number to be the inverse of the above definition. [3] [4]
Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. . This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and ...
1781 - Joseph Priestley attempts to measure the ability of different gases to conduct heat using the heated wire experiment. 1931 - Sven Pyk and Bertil Stalhane proposed the first “transient” hot wire method for the measurement of thermal conductivity of solids and powders. Unlike previous methods, the one devised by Pyk and Stalhane used ...
Thermal effusivity and thermal diffusivity are related quantities; respectively a product versus a ratio of a material's intensive heat transport and storage properties. The diffusivity appears explicitly in the heat equation, which is an energy conservation equation , and measures the speed at which thermal equilibrium can be reached by a body ...