Search results
Results from the WOW.Com Content Network
This was considered a minor step compared to the others for smaller discrete log computations. However, larger discrete logarithm records [1] [2] were made possible only by shifting the work away from the linear algebra and onto the sieve (i.e., increasing the number of equations while reducing the number of variables).
In mathematics, the logarithm to base b is the inverse function of exponentiation with base b. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 10 3, the logarithm base of 1000 is 3, or log 10 (1000) = 3.
To find the needed , , , and the algorithm uses Floyd's cycle-finding algorithm to find a cycle in the sequence =, where the function: + is assumed to be random-looking and thus is likely to enter into a loop of approximate length after steps.
Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.
The logarithm keys (log for base-10 and ln for base-e) on a typical scientific calculator. The advent of hand-held calculators largely eliminated the use of common logarithms as an aid to computation. The numerical value for logarithm to the base 10 can be calculated with the following identities: [5]
In mathematics, for given real numbers a and b, the logarithm log b a is a number x such that b x = a.Analogously, in any group G, powers b k can be defined for all integers k, and the discrete logarithm log b a is an integer k such that b k = a.
The baby-step giant-step algorithm is a generic algorithm. It works for every finite cyclic group. It is not necessary to know the exact order of the group G in advance. The algorithm still works if n is merely an upper bound on the group order. Usually the baby-step giant-step algorithm is used for groups whose order is prime.
The BKM algorithm is a shift-and-add algorithm for computing elementary functions, first published in 1994 by Jean-Claude Bajard, Sylvanus Kla, and Jean-Michel Muller.BKM is based on computing complex logarithms (L-mode) and exponentials (E-mode) using a method similar to the algorithm Henry Briggs used to compute logarithms.