Search results
Results from the WOW.Com Content Network
Fructose-bisphosphate aldolase (EC 4.1.2.13), often just aldolase, is an enzyme catalyzing a reversible reaction that splits the aldol, fructose 1,6-bisphosphate, into the triose phosphates dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (G3P).
Aldolase A (ALDOA, or ALDA), also known as fructose-bisphosphate aldolase, is an enzyme that in humans is encoded by the ALDOA gene on chromosome 16.. The protein encoded by this gene is a glycolytic enzyme that catalyzes the reversible conversion of fructose-1,6-bisphosphate to glyceraldehyde 3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP).
Aldolase B also known as fructose-bisphosphate aldolase B or liver-type aldolase is one of three isoenzymes (A, B, and C) of the class I fructose 1,6-bisphosphate aldolase enzyme (EC 4.1.2.13), and plays a key role in both glycolysis and gluconeogenesis.
Unqualified, aldolase usually refers to the enzyme fructose-bisphosphate aldolase. Aldolase may also refer to: Proteins serving as fructose-bisphosphate aldolase
They also shed light on the role of one compound as a glycolysis intermediate: fructose 1,6-bisphosphate. [13]: 151–158 The elucidation of fructose 1,6-bisphosphate was accomplished by measuring CO 2 levels when yeast juice was incubated with glucose. CO 2 production increased rapidly then slowed down. Harden and Young noted that this process ...
S-adenosyl-L-methionine:(fructose-bisphosphate aldolase)-lysine N 6-methyltransferase; Other names are: rubisco methyltransferase; ribulose-bisphosphate-carboxylase/oxygenase N-methyltransferase; ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit epsilonN-methyltransferase
Aldolase A deficiency is an autosomal recessive [3] metabolic disorder resulting in a deficiency of the enzyme aldolase A; the enzyme is found predominantly in red blood cells and muscle tissue. The deficiency may lead to hemolytic anaemia as well as myopathy associated with exercise intolerance and rhabdomyolysis in some cases.
Fructose 1,6-bisphosphate, known in older publications as Harden-Young ester, is fructose sugar phosphorylated on carbons 1 and 6 (i.e., is a fructosephosphate). The β-D-form of this compound is common in cells. [1] Upon entering the cell, most glucose and fructose is converted to fructose 1,6-bisphosphate. [2] [3]