Search results
Results from the WOW.Com Content Network
[3] Specifically, the diagram records the pressure of steam versus the volume of steam in a cylinder, throughout a piston's cycle of motion in a steam engine. The diagram enables calculation of the work performed and thus can provide a measure of the power produced by the engine. [4]
An indicator diagram is a chart used to measure the thermal, or cylinder, performance of reciprocating steam and internal combustion engines and compressors. [1] An indicator chart records the pressure in the cylinder versus the volume swept by the piston, throughout the two or four strokes of the piston which constitute the engine, or ...
A compound steam engine unit is a type of steam engine where steam is expanded in two or more stages. [1] [2] A typical arrangement for a compound engine is that the steam is first expanded in a high-pressure (HP) cylinder, then having given up heat and losing pressure, it exhausts directly into one or more larger-volume low-pressure (LP ...
When liquid water becomes steam, it increases in volume by 1,700 times at standard temperature and pressure; this change in volume can be converted into mechanical work by steam engines such as reciprocating piston type engines and steam turbines, which are a sub-group of steam engines. Piston type steam engines played a central role in the ...
Steam engines and turbines operate on the Rankine cycle which has a maximum Carnot efficiency of 63% for practical engines, with steam turbine power plants able to achieve efficiency in the mid 40% range. The efficiency of steam engines is primarily related to the steam temperature and pressure and the number of stages or expansions. [15]
A steam engine is a heat engine that performs mechanical work using steam as its working fluid. The steam engine uses the force produced by steam pressure to push a piston back and forth inside a cylinder. This pushing force can be transformed by a connecting rod and crank into rotational force for work.
The steam pressure drops as it expands. A late cutoff delivers full steam pressure to move the piston through its entire stroke, for maximum start-up forces. But, since there will still be unexploited pressure in the cylinder at the end of the stroke, this is achieved at the expense of engine efficiency. In this situation the steam will still ...
Because the engine's power was derived from the vacuum produced by condensation of the steam, the requirement was for large volumes of steam at very low pressure hardly more than 1 psi (6.9 kPa). The whole boiler was set into brickwork which retained some heat.