enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Asymptote - Wikipedia

    en.wikipedia.org/wiki/Asymptote

    If a known function has an asymptote, then the scaling of the function also have an asymptote. If y = ax + b is an asymptote of f ( x ), then y = cax + cb is an asymptote of cf ( x ) For example, f ( x )= e x -1 +2 has horizontal asymptote y =0+2=2, and no vertical or oblique asymptotes.

  3. Singularity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Singularity_(mathematics)

    In other words, the function has an infinite discontinuity when its graph has a vertical asymptote. An essential singularity is a term borrowed from complex analysis (see below). This is the case when either one or the other limits f ( c − ) {\displaystyle f(c^{-})} or f ( c + ) {\displaystyle f(c^{+})} does not exist, but not because it is ...

  4. Cumulant - Wikipedia

    en.wikipedia.org/wiki/Cumulant

    The cumulant-generating function will have vertical asymptote(s) at the negative supremum of such c, if such a supremum exists, and at the supremum of such d, if such a supremum exists, otherwise it will be defined for all real numbers.

  5. Wikipedia:Reference desk/Archives/Mathematics/2025 January 19 ...

    en.wikipedia.org/wiki/Wikipedia:Reference_desk/...

    The vertical asymptote is always at = and stays in the range < <, the horizontal asymptote is always =, the function always passes through (1,1) and the slope at (1,1) is always -1. Increasing a {\displaystyle a} sharpens the corner and thickens the tail.

  6. Truncus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Truncus_(mathematics)

    The basic truncus y = 1 / x 2 has asymptotes at x = 0 and y = 0, and every other truncus can be obtained from this one through a combination of translations and dilations. For the general truncus form above, the constant a dilates the graph by a factor of a from the x -axis; that is, the graph is stretched vertically when a > 1 and compressed ...

  7. Polynomial and rational function modeling - Wikipedia

    en.wikipedia.org/wiki/Polynomial_and_rational...

    Unconstrained rational function fitting can, at times, result in undesired vertical asymptotes due to roots in the denominator polynomial. The range of x values affected by the function "blowing up" may be quite narrow, but such asymptotes, when they occur, are a nuisance for local interpolation in the neighborhood of the asymptote point. These ...

  8. Gompertz function - Wikipedia

    en.wikipedia.org/wiki/Gompertz_function

    The inverse function only produces numerical values in the set of real numbers between its two asymptotes, which are now vertical instead of horizontal like in the forward Gompertz function. Outside of the range defined by the vertical asymptotes, the inverse function requires computing the logarithm of negative numbers.

  9. Inflection point - Wikipedia

    en.wikipedia.org/wiki/Inflection_point

    For a function f, if its second derivative f″(x) exists at x 0 and x 0 is an inflection point for f, then f″(x 0) = 0, but this condition is not sufficient for having a point of inflection, even if derivatives of any order exist. In this case, one also needs the lowest-order (above the second) non-zero derivative to be of odd order (third ...