Search results
Results from the WOW.Com Content Network
FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google.The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1]
DeepFace is a deep learning facial recognition system created by a research group at Facebook.It identifies human faces in digital images. The program employs a nine-layer neural network with over 120 million connection weights and was trained on four million images uploaded by Facebook users.
Examples include upper torsos, pedestrians, and cars. Face detection simply answers two question, 1. are there any human faces in the collected images or video? 2. where is the face located? Face-detection algorithms focus on the detection of frontal human faces. It is analogous to image detection in which the image of a person is matched bit ...
The face recognition system is deployed to identify individuals among the travellers that are sought by the Panamanian National Police or Interpol. [140] Tocumen International Airport operates an airport-wide surveillance system using hundreds of live face recognition cameras to identify wanted individuals passing through the airport.
Deeplearning4j relies on the widely used programming language Java, though it is compatible with Clojure and includes a Scala application programming interface (API). It is powered by its own open-source numerical computing library, ND4J, and works with both central processing units (CPUs) and graphics processing units (GPUs).
Hugging Face's transformers library can manipulate large language models. [4] Jupyter Notebooks can execute cells of Python code, retaining the context between the execution of cells, which usually facilitates interactive data exploration. [5] Elixir is a high-level functional programming language based on the Erlang VM. Its machine-learning ...
In the original Chua-Yang CNN (CY-CNN) processor, the state of the cell was a weighted sum of the inputs and the output was a piecewise linear function.However, like the original perceptron-based neural networks, the functions it could perform were limited: specifically, it was incapable of modeling non-linear functions, such as XOR.
Object recognition – technology in the field of computer vision for finding and identifying objects in an image or video sequence. Humans recognize a multitude of objects in images with little effort, despite the fact that the image of the objects may vary somewhat in different view points, in many different sizes and scales or even when they ...