Search results
Results from the WOW.Com Content Network
These leg mechanisms have applications in mobile robotics and in gait analysis. [3] [4] The central 'crank' link moves in circles as it is actuated by a rotary actuator such as an electric motor. All other links and pin joints are unactuated and move because of the motion imparted by the
Underwater walking robot, using Klann leg linkages in laser-cut and anodised aluminium. [1] The Klann linkage is a planar mechanism designed to simulate the gait of legged animal and function as a wheel replacement, a leg mechanism. The linkage consists of the frame, a crank, two grounded rockers, and two couplers all connected by pivot joints.
In robotics, robot kinematics applies geometry to the study of the movement of multi-degree of freedom kinematic chains that form the structure of robotic systems. [1] [2] The emphasis on geometry means that the links of the robot are modeled as rigid bodies and its joints are assumed to provide pure rotation or translation.
Mechanisms, manipulators or robots are typically composed of links connected together by joints. Serial manipulators, like the SCARA robot, connect a moving platform to a base through a single chain of links and joints. In robotics the moving platform is called the 'end effector'.
When controlled motors actuate the linkage, the whole system (a mechanism and its actuators) becomes a robot. [4] This is usually done by placing two servomotors (to control the two degrees of freedom) at the joints A and B, controlling the angle of the links L2 and L5. L1 is the grounded link.
To determine the coordinate transformations [Z ] and [X ], the joints connecting the links are modeled as either hinged or sliding joints, each of which has a unique line S in space that forms the joint axis and define the relative movement of the two links. A typical serial robot is characterized by a sequence of six lines S i (i = 1, 2 ...
An end-effector, also called a robot hand, can be attached to the end of the chain. As other robotic mechanisms, robot arms are typically classified in terms of the number of degrees of freedom. Usually, the number of degrees of freedom is equal to the number of joints that move the links of the robot arm.
The movement of a body, or link, is studied using geometry so the link is considered to be rigid. [1] The connections between links are modeled as providing ideal movement, pure rotation or sliding for example, and are called joints. A linkage modeled as a network of rigid links and ideal joints is called a kinematic chain.