Search results
Results from the WOW.Com Content Network
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
Hooke's law may be written in terms of tensor components using index notation as = +, where δ ij is the Kronecker delta. The two parameters together constitute a parameterization of the elastic moduli for homogeneous isotropic media, popular in mathematical literature, and are thus related to the other elastic moduli ; for instance, the bulk ...
Simple harmonic motion can serve as a mathematical model for a variety of motions, but is typified by the oscillation of a mass on a spring when it is subject to the linear elastic restoring force given by Hooke's law. The motion is sinusoidal in time and demonstrates a single resonant frequency.
The top part is a plot of the linear relation between force F and elongation X according to Hooke's law (solid line). The red half correspond to positive elongation and pulling force, the blue part to negative elongaton (compression) and pushing force. The slope of the curve is Hooke's constant "k".
A general fourth-rank tensor in 3D has 3 4 = 81 independent components , but the elasticity tensor has at most 21 independent components. [3] This fact follows from the symmetry of the stress and strain tensors, together with the requirement that the stress derives from an elastic energy potential.
It can be proved that a material having two planes of symmetry must have a third one. Isotropic materials have an infinite number of planes of symmetry. Transversely isotropic materials are special orthotropic materials that have one axis of symmetry (any other pair of axes that are perpendicular to the main one and orthogonal among themselves ...
Expressed in terms of components with respect to a rectangular Cartesian coordinate system, the governing equations of linear elasticity are: [1]. Equation of motion: , + = where the (), subscript is a shorthand for () / and indicates /, = is the Cauchy stress tensor, is the body force density, is the mass density, and is the displacement.