enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Deep reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Deep_reinforcement_learning

    Various techniques exist to train policies to solve tasks with deep reinforcement learning algorithms, each having their own benefits. At the highest level, there is a distinction between model-based and model-free reinforcement learning, which refers to whether the algorithm attempts to learn a forward model of the environment dynamics.

  3. Reward hacking - Wikipedia

    en.wikipedia.org/wiki/Reward_hacking

    In a 2004 paper, a reinforcement learning algorithm was designed to encourage a physical Mindstorms robot to remain on a marked path. Because none of the robot's three allowed actions kept the robot motionless, the researcher expected the trained robot to move forward and follow the turns of the provided path.

  4. AlphaDev - Wikipedia

    en.wikipedia.org/wiki/AlphaDev

    AlphaDev is an artificial intelligence system developed by Google DeepMind to discover enhanced computer science algorithms using reinforcement learning.AlphaDev is based on AlphaZero, a system that mastered the games of chess, shogi and go by self-play.

  5. Covariant (company) - Wikipedia

    en.wikipedia.org/wiki/Covariant_(company)

    The model is trained on text, images, videos, robot actions, and a range of numerical sensor readings captured by warehouse robots running the Covariant Brain. [ 13 ] [ 14 ] The technology enables robots to learn how to manipulate objects, through the use of deep learning and reinforcement learning. [ 3 ]

  6. Pieter Abbeel - Wikipedia

    en.wikipedia.org/wiki/Pieter_Abbeel

    The website discloses that the team is building a universal AI to help robots see, reason, and on the world around them using deep imitation learning and deep reinforcement learning. Currently, in addition to his research, Abbeel teaches upper-division and graduate classes on Artificial Intelligence, Robotics, and Deep Unsupervised Learning. [22]

  7. Reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning

    Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...

  8. Reinforcement learning from human feedback - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning...

    In machine learning, reinforcement learning from human feedback (RLHF) is a technique to align an intelligent agent with human preferences. It involves training a reward model to represent preferences, which can then be used to train other models through reinforcement learning .

  9. Multi-agent reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Multi-agent_reinforcement...

    Multi-agent reinforcement learning (MARL) is a sub-field of reinforcement learning. It focuses on studying the behavior of multiple learning agents that coexist in a shared environment. [ 1 ] Each agent is motivated by its own rewards, and does actions to advance its own interests; in some environments these interests are opposed to the ...