Search results
Results from the WOW.Com Content Network
DNA barcoding is a method of species identification using a short section of DNA from a specific gene or genes. The premise of DNA barcoding is that by comparison with a reference library of such DNA sections (also called "sequences"), an individual sequence can be used to uniquely identify an organism to species, just as a supermarket scanner uses the familiar black stripes of the UPC barcode ...
BOLD is freely available to any researcher with interests in DNA Barcoding. By providing specialized services, it aids in the publication of records that meet the standards needed to gain BARCODE designation in the international nucleotide sequence databases. Because of its web-based delivery and flexible data security model, it is also well ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Optical mapping [1] is a technique for constructing ordered, genome-wide, high-resolution restriction maps from single, stained molecules of DNA, called "optical maps". By mapping the location of restriction enzyme sites along the unknown DNA of an organism, the spectrum of resulting DNA fragments collectively serves as a unique "fingerprint" or "barcode" for that sequence.
Metabarcoding is the barcoding of DNA/RNA (or eDNA/eRNA) in a manner that allows for the simultaneous identification of many taxa within the same sample. The main difference between barcoding and metabarcoding is that metabarcoding does not focus on one specific organism, but instead aims to determine species composition within a sample.
Hebert proposed the 658 bases of the Folmer region of the mitochondrial gene cytochrome-C oxidase-1 as the standard barcode region. Hebert is the Director of the Biodiversity Institute of Ontario, the Canadian Centre for DNA Barcoding, and the International Barcode of Life Project (iBOL), all headquartered at the University of Guelph.
The key concept for barcoding macroinvertebrates, is proper selection of DNA markers (DNA barcode region) to amplify appropriate gene regions, using PCR techniques. The DNA barcode region needs to be ideally conserved within a species, but variable among different (even closely related) species and therefore, its sequence should serve as a ...
DNA barcoding in diet assessment is the use of DNA barcoding to analyse the diet of organisms. [1] [2] and further detect and describe their trophic interactions.[3] [4] This approach is based on the identification of consumed species by characterization of DNA present in dietary samples, [5] e.g. individual food remains, regurgitates, gut and fecal samples, homogenized body of the host ...