Search results
Results from the WOW.Com Content Network
This transport chain produces a proton-motive force, pumping H + ions across the membrane and producing a concentration gradient that can be used to power ATP synthase during chemiosmosis. This pathway is known as cyclic photophosphorylation, and it produces neither O 2 nor NADPH.
Reaction centers are present in all green plants, algae, and many bacteria.A variety in light-harvesting complexes exist across the photosynthetic species. Green plants and algae have two different types of reaction centers that are part of larger supercomplexes known as P700 in Photosystem I and P680 in Photosystem II.
In oxygenic photosynthesis, the first electron donor is water, creating oxygen (O 2) as a by-product. In anoxygenic photosynthesis, various electron donors are used. Cytochrome b 6 f and ATP synthase work together to produce ATP (photophosphorylation) in two distinct ways.
Chemiosmosis is the movement of ions across a semipermeable membrane bound structure, down their electrochemical gradient.An important example is the formation of adenosine triphosphate (ATP) by the movement of hydrogen ions (H +) across a membrane during cellular respiration or photosynthesis.
Facilitated diffusion is the rapid movement of solutes or ions following a concentration gradient, facilitated by transport proteins. Active transport is the uptake by cells of ions or molecules against a concentration gradient; this requires an energy source, usually ATP, to power molecular pumps that move the ions or molecules through the ...
is the gradient, i.e., rate of change with position, of the logarithm of the salt concentration, which is equivalent to the rate of change of the salt concentration, divided by the salt concentration – it is effectively one over the distance over which the concentration decreases by a factor of e. The above equation is approximate, and ...
The grey represents the concentration of a molecule. A biomolecular gradient is established by a difference in the concentration of molecules in a biological system such as individual cells, groups of cells, or an entire organism. A biomolecular gradient can exist intracellularly (within a cell) or extracellularly (between groups of cells).
It has two components: a difference in proton concentration (a H + gradient, ΔpH) and a difference in electric potential, with the N-side having a negative charge. [ 4 ] ATP synthase releases this stored energy by completing the circuit and allowing protons to flow down the electrochemical gradient, back to the N-side of the membrane. [ 5 ]