Search results
Results from the WOW.Com Content Network
These examples, one from mathematics and one from natural language, illustrate the concept of vacuous truths: "For any integer x, if x > 5 then x > 3." [11] – This statement is true non-vacuously (since some integers are indeed greater than 5), but some of its implications are only vacuously true: for example, when x is the integer 2, the statement implies the vacuous truth that "if 2 > 5 ...
For example, oxygen is necessary for fire. But one cannot assume that everywhere there is oxygen, there is fire. A condition X is sufficient for Y if X, by itself, is enough to bring about Y. For example, riding the bus is a sufficient mode of transportation to get to work.
The biconditional is true in two cases, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), [2] and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of ...
For example, in the conditional statement: "If P then Q", Q is necessary for P, because the truth of Q is guaranteed by the truth of P. (Equivalently, it is impossible to have P without Q , or the falsity of Q ensures the falsity of P .) [ 1 ] Similarly, P is sufficient for Q , because P being true always implies that Q is true, but P not being ...
In semantics and pragmatics, a truth condition is the condition under which a sentence is true. For example, "It is snowing in Nebraska" is true precisely when it is snowing in Nebraska. Truth conditions of a sentence do not necessarily reflect current reality. They are merely the conditions under which the statement would be true. [1]
" In this case, unlike the last example, the inverse of the statement is true. The converse is "If a polygon has four sides, then it is a quadrilateral." Again, in this case, unlike the last example, the converse of the statement is true. The negation is "There is at least one quadrilateral that does not have four sides.
Let S be a statement of the form P implies Q (P → Q). Then the converse of S is the statement Q implies P (Q → P). In general, the truth of S says nothing about the truth of its converse, [2] unless the antecedent P and the consequent Q are logically equivalent. For example, consider the true statement "If I am a human, then I am mortal."
The first premise is a conditional ("if-then") claim, such as P implies Q. The second premise is an assertion that Q, the consequent of the conditional claim, is not the case. From these two premises it can be logically concluded that P, the antecedent of the conditional claim, is also not the case. For example: