enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vacuous truth - Wikipedia

    en.wikipedia.org/wiki/Vacuous_truth

    These examples, one from mathematics and one from natural language, illustrate the concept of vacuous truths: "For any integer x, if x > 5 then x > 3." [11] – This statement is true non-vacuously (since some integers are indeed greater than 5), but some of its implications are only vacuously true: for example, when x is the integer 2, the statement implies the vacuous truth that "if 2 > 5 ...

  3. List of fallacies - Wikipedia

    en.wikipedia.org/wiki/List_of_fallacies

    For example, oxygen is necessary for fire. But one cannot assume that everywhere there is oxygen, there is fire. A condition X is sufficient for Y if X, by itself, is enough to bring about Y. For example, riding the bus is a sufficient mode of transportation to get to work.

  4. Affirming the consequent - Wikipedia

    en.wikipedia.org/wiki/Affirming_the_consequent

    In propositional logic, affirming the consequent (also known as converse error, fallacy of the converse, or confusion of necessity and sufficiency) is a formal fallacy (or an invalid form of argument) that is committed when, in the context of an indicative conditional statement, it is stated that because the consequent is true, therefore the ...

  5. Truth condition - Wikipedia

    en.wikipedia.org/wiki/Truth_condition

    In semantics and pragmatics, a truth condition is the condition under which a sentence is true. For example, "It is snowing in Nebraska" is true precisely when it is snowing in Nebraska. Truth conditions of a sentence do not necessarily reflect current reality. They are merely the conditions under which the statement would be true. [1]

  6. Necessity and sufficiency - Wikipedia

    en.wikipedia.org/wiki/Necessity_and_sufficiency

    For example, in the conditional statement: "If P then Q", Q is necessary for P, because the truth of Q is guaranteed by the truth of P. (Equivalently, it is impossible to have P without Q , or the falsity of Q ensures the falsity of P .) [ 1 ] Similarly, P is sufficient for Q , because P being true always implies that Q is true, but P not being ...

  7. Truth-conditional semantics - Wikipedia

    en.wikipedia.org/wiki/Truth-conditional_semantics

    Truth-conditional semantics is an approach to semantics of natural language that sees meaning (or at least the meaning of assertions) as being the same as, or reducible to, their truth conditions. This approach to semantics is principally associated with Donald Davidson , and attempts to carry out for the semantics of natural language what ...

  8. Contraposition - Wikipedia

    en.wikipedia.org/wiki/Contraposition

    " In this case, unlike the last example, the inverse of the statement is true. The converse is "If a polygon has four sides, then it is a quadrilateral." Again, in this case, unlike the last example, the converse of the statement is true. The negation is "There is at least one quadrilateral that does not have four sides.

  9. If and only if - Wikipedia

    en.wikipedia.org/wiki/If_and_only_if

    The biconditional is true in two cases, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), [2] and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of ...